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AUTHOR'S FOREWORD 

Since the  second h a l f  of t h e  las t  century,  when Maxwell and 

Boltzmann made c l e a r  t h e  p r inc ip l e s  of t h e  theory of gases, t h e  main 

problem on which t h e  k i n e t i c  theory has centered has been the  s o l u t i o n  

of t he  Boltzmann equation. The e f f o r t s  of many authors r e s u l t e d  i n  

l a high l e v e l  of understanding of t h e  p r i n c i p a l  aspec ts  of t h e  k i n e t i c  

theory ,  and t h e  s o l u t i o n  of a number of problems which both i n t e r e s t e d  

s c i e n t i s t s  and w e r e  of p r a c t i c a l  i n t e r e s t .  The rap id  growth of 

computer technology opened new p o s s i b i l i t i e s  f o r  so lv ing  these  problems. 

Nevertheless, a t  present  t he re  e x i s t s  no general  o r  s u f f i c i e n t l y  

e f f i c i e n t  method f o r  so lv ing  t h e  Boltzmann equation. 

In 1965, when a new BESM-6 computer began opera t ion ,  a s m a l l  group 
j 
1, 
I of staff  members of t h e  Computer Center of t h e  Academy of Sciences of 

t h e  USSR began inves t iga t ions  i n  t h e  a rea  of t he  k i n e t i c  theory ,  

attempting t o  develop methods f o r  solving t h e  mechanics problems 

involved i n  r a r e f i e d  gases. This c o l l e c t i o n  r e f l e c t s  t h e  f i r s t  r e s u l t s  

obtained by the  authors during 1965-1967. 

Several  l i n e s  of i nves t iga t ion  w e r e  pursued. The aim of t he  

first was t o  f i n d  accura te  so lu t ions  f o r  t h e  Boltzmann equation. These 

so lu t ions  can be used f o r  t e s t i n g  t h e  general  so lu t ion  methods which 

are d i f f i c u l t  t o  ob ta in  theo re t i ca l ly .  This includes the  work of 

V. A. Rykov and F. G. Cheremisin, a s  w e l l  a s  t h e  work on s p a t i a l l y  

uniform flows i n  t h e  k i n e t i c  theory done by A. A. Nikol ' sk iy ,  and 

the  work of V. A. Rykov and T. I. Chukanov on t h e  r e l axa t ion  of a 

mixture of gases, which, a s ide  from t h e  k i n e t i c  theory ,  is of g r e a t  

i n t e r e s t  from t h e  s tandpoin t  of chemical k ine t i c s .  

The second d i r e c t i o n  is assoc ia ted  with the  search  f o r  d i r e c t  

numerical so lu t ions  t o  t h e  Boltzmann equation problem (F. G. Cheremisin, 

Ye. F. L i m a r ) .  Some d i f f i c u l t i e s  which a rose  i n  developing a general  

method f o r  t h e  s o l u t i o n  of Boltzmann equations may be overcome by 1 
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purely a n a l y t i c a l  methods ( Y e .  M. Shakhov). B, 
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IIIIIII I Ill 

Inves t iga t ions  of t h e  flow of r a r e f i e d  gas  inc lude  t h e  problem - / 4  
of i n t e r a c t i o n  o f  g a s  p a r t i c l e s  with t h e  surface of so l id s .  The 

r e s u l t s  obtained i n  t h i s  area are il luminated i n  t h e  ar t ic le  by 

A. A. Pyarnpuu. 

The c o l l e c t i o n  a l s o  conta ins  work which d e a l s  with t h e  use of 

t h e  c l a s s i c a l  Enskog-Chapman method as appl ied  t o  t h e  flow of chemically 

a c t i v e  gas  mixtures  (B. V. Alekseyev, B. V. Alekseyev and V. R. Yanovskiy). 

I t  is hoped t h a t  t h i s  work w i l l  be of use t o  s p e c i a l i s t s  and t o  

a l l  those  who a r e  i n t e r e s t e d  i n  t h e  theory of r a r e f i e d  gases, and 

t h a t  it w i l l  f a c i l i t a t e  rap id  so lu t ion  of many t h e o r e t i c a l  and p r a c t i c a l  

problems. 

The authors wish t o  express t h e i r  deep g r a t i t u d e  t o  A. A. Nikol 'skiy,  

who d i r ec t ed  t h e  work on r a r e f i e d  gases a t  t h e  t i m e  when it w a s  organ- 

ized and who obtained t h e  i n i t i a l  r e s u l t s ,  and t o  0. s. Ryzhov f o r  

t h e  d iscuss ion  of t h e  work and useful suggestions.  It  i s  perhaps super- 

f luous  t o  say t h a t  t h e  authors are indebted t o  a l d g e  extent t o  

each o ther  f o r  mutual success. 
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NUMERICAL METHODS FOR SOLVING THE BOLTZMANN EQUATION 

(A Review) 

Ye. F. L i m a r ,  Ye. M. Shakhov, and V. P. Shidlovskiy 

Introduct ion 

The i n t e g r o - d i f f e r e n t i a l  Boltzmann equat ion,  which is t h e  p r i n c i p a l  

equation i n  t h e  k i n e t i c  theory of g a s e s ,  w a s  obtained by Boltzmann approxi- 

mately one hundred years  ago. Since t h a t  t i m e ,  s i g n i f i c a n t  success has been 

achieved i n  t h e  i n v e s t i g a t i o n  of t h i s  equation by means of a n a l y t i c a l  methods, 

t h e  p r i n c i p a l  ideas of which w e r e  proposed long ago by Maxwell and Boltzmann. 

In  t h e  main, t hese  achievements p e r t a i n  t o  t h e  inves t iga t ion  of flow c l o s e  t o  

t h e  l imi t ing  condi t ion  of a continuous medium. Subsequently, completely new 

p o s s i b i l i t i e s  arose assoc ia ted  with the  use of high-speed computers. Since 

t h e  development of t h e  new technology r equ i r e s  most accurate  da t a  r e t r i e v a l  

j u s t  i n  t h a t  range of c h a r a c t e r i s t i c  parameters where t h e  accepted a n a l y t i c a l  

methods are not app l i cab le ,  t h e  f irst  numerical methods f o r  the s o l u t i o n  of t h e  

Boltzmann equation began t o  appear. In t h e  recent  monograph of M. N. Kogan [l], 

a review of such methods is given. However, a f t e r  t h i s  monograph was published, 

a new i n t e r e s t i n g  work appeared i n  l i t e r a t u r e  i n  which t h e  ear l ier  described 

methods w e r e  e i t h e r  modified o r  new methods w e r e  proposed. 

In t h e  case of numerical s o l u t i o n  of t h e  Boltzmann equat ion,  great  

d i f f i c u l t i e s  a rose  and u n t i l  t h i s  t i m e  at tempts w e r e  made t o  solve only t h e  

s implest  problems. One of t h e  first exact  so lu t ions  of t h e  Boltzmann equat ion 

was given by V. A. Rykov [ Z ] ,  and V. A.  Rykov and T. N. Chukanova [3l  f o r  t h e  

re laxa t ion  problem of t h e  d i s t r i b u t i o n  funct ion which depends only on t h e  

ve loc i ty  modulus i n  homogeneous space. In reference [ Z ] ,  it w a s  shown t h a t  t h e  

m u l t i p l i c i t y  of t he  c o l l i s i o n  i n t e g r a l  can be reduced t o  two; t h i s  enables  one 

t o  so lve  t h e  problem by ordinary methods with g rea t  accuracy. Numerical methods 

e x i s t  f o r  solving more complex one-dimensional and even two-dimensional pro- 

blems, however, i n  t h e  majori ty  of cases, it is almost never poss ib le  t o  

ind ica t e  t h e  degree of accuracy of t h e  obtained s o l u t i o n s ,  o r  t h e  accuracy i n  

approximating t h e  o r i g i n a l  Boltzmann equation. 

_ _  __ .- _ _  - - 

* Numbers i n  t h e  margin i n d i c a t e  paginat ion i n  t h e  fore ign  t e x t .  



A t  p re sen t ,  t h e  Monte Carlo s ta t i s t ica l  sampling methods are developed 

more than any o the r  and these  have given t h e  most i n t e r e s t i n g  r e s u l t s .  These 

methods w e r e  first proposed by Alder, Wainwright, and o the r s  [ 4 ,  51, who made 

t h e  first attempt t o  so lve  t h e  r e l axa t ion  problem i n  gases i n  a homogeneous 

space. The Monte Carlo methods w e r e  f u r t h e r  developed by Haviland and Lavin 

[ 6 ,  7 ,  81, Bird C9-121 as appl ied  t o  t h e  boundary problem i n  t h e  theory  of 

r a r e f i e d  gases. 

The review cons iders  t h e  methods which show promise i n  so lv ing  t h e  Boltz- 

mann equation i n  a broad range of Knudsen numbers. Therefore,  w e  s h a l l  not 

touch upon such methods as t h e  Monte Carlo method i n  t h e  theory of one c o l l i s i o n  

f o r  flow c lose  t o  f r e e  molecular flow. It has been described i n  g rea t  d e t a i l  

i n  M. N. Kogan’s monograph [l], and i n  t h e  work of V. A. Perepukhov ( f o r  example, 

see reference  [ l3 ] ) ,  and it already became a working method f o r  ca l cu la t ion  of 

t h e  hydrodynamic flow pas t  a body of complex shape under condi t ions  c lose  t o  

f r e e  molecular flow. 

The d i s c r e t e  v e l o c i t i e s  method, which performed very w e l l  i n  so lv ing  

the  problem i n  t h e  theory of r a d i a t i o n ,  is used now success fu l ly  f o r  so lv ing  

t h e  k i n e t i c  model equation. The review b r i e f l y  p re sen t s  t h e  work of B. Hamel 

and M. Wachman, which i n  f a c t  is the  f i r s t  attempt t o  apply t h i s  method t o  t h e  

s o l u t i o n  of t h e  Boltzmann equation. 

F i n a l l y ,  t he  las t  p a r t  of t h i s  review presents  c e r t a i n  new approaches t o  

t h e  so lu t ion  of t he  Boltzmann equation; these  w e r e  developed by F. G. Cheremisin 

[14] and Ye. M. Shakhov [ l5 ,  161, and are published i n  t h i s  co l l ec t ion .  

1. Monte Carlo Method 

These are genera l ly  the  methods i n  which molecular motion is modeled on 

a high-speed e l e c t r o n i c  computer. However, one can a l s o  include here those 

methods i n  which t h e  Monte Carlo method i t s e l f  is used only i n  ca l cu la t ion  of 

t he  Boltzmann c o l l i s i o n  in t eg ra l .  

Since t h e  g a s  c o n s i s t s  of a l a r g e  number of molecules, i ts  motion can be L7 
modeled by two methods: e i t h e r  using the  p rope r t i e s  of t h e  symmetry of flow, 

l imi t ing  oneself only t o  modeling of the  phenomenon i n  an extremely t h i n  l aye r  

(here t h e  necessary number of molecules t o  be considered becomes acceptab le)  o r  

one models t h e  real molecules as spheres of s i g n i f i c a n t l y  larger diameter,  such 

2 



as w i l l  produce t h e  necessary Knudsen number i n  ca lcu la t ions  with a r e l a t i v e l y  

s m a l l  number of spheres. 

Haviland-Lavin Method. One of t h e  Monte Carlo methods w a s  first described 
- .  

i n  t h e  work of Haviland and Lavin [ 6 ,  71. Using t h i s  method, problems of heat  

transfer between p a r a l l e l  p l a t e s  [ 6 ]  and later t h e  problem of  t h e  s t r u c t u r e  of 

shock waves [7 ]  w e r e  solved, The most d e t a i l e d  descr ip t ion  of t h e  method and 

t h e  r e s u l t s  w a s  given i n  t h e  book [81, In  t h e  above-mentioned problems t h e  

d i s t r i b u t i o n  func t ion  depends on two v e l o c i t i e s  u V and one physical  space 

coordinate X. The s o l u t i o n  of t h e  problem by t h i s  Monte Carlo method is some- 

what analogous t o  t h e  following i t e r a t i o n  f o r  solving one dimensional s t a t i o n a r y  

equations 

X '  

-+ - b +  
where, as usual  g = u - V ; b ,  E - c o l l i s i o n  parameters; primed var iab les  refer 

t o  t h e  v e l o c i t i e s  a t  t he  c o l l i s i o n .  In r e a l i t y  t h e  i t e r a t i o n  process is modeled 

as follows. 

The physical  space along the  x coordinate  is subdivided i n t o  ce l l s ,  which 

have t h e  shape 

Ax. The veloc 

i n  t h e  form of 

space c e l l  has 

v e l o c i t i e s  I ux 

of a para l le lopiped  with the area of t h e  base A A  and t h e  a l t i t u d e  

t y  space u V is subdivided i n t o  cel ls  which can be represented 

d i sks  of r a d i u s  V and thickness  A V  and height  Aux. 

a volume 2rrVAVAu AQx. A l l  of t h e  molecules which have one of 

X '  

The phase 

X 

> u o r  V >  Vo, f a l l  i n  t h e  end c e l l s ;  here u and Vo are t h e  
0 

X 
0 

X 

boundaries of next t o  t h e  las t  cel l .  Inside t h e  c e l l  t h e  d i s t r i b u t i o n  func t ion  

value is considered t o  be constant  and equal t o  t h e  d i s t r i b u t i o n  funct ion value 

i n  t h e  center  of t h e  cel l .  

The molecules with t h e  d i s t r i b u t i o n  func t ion  of t he  (r - 11% approximation 

a r e  known as f i e l d  molecules; t h e  molecules by means of which the  d i s t r i b u t i o n  

funct ion of t h e  ra approximation is sought are known as t h e  t e s t  molecules. 

The motion and c o l l i s i o n  of tes t  molecules is modeled i n  a medium of f i e l d  

molecules. The tes t  molecules are chosen a t  t h e  boundary by a random 

3 



method i n  accordance with t h e  known d i s t r i b u t i o n  dens i ty  of p a r t i c l e s  which f a l l  

ou t s ide  t h e  boundaries. H e r e  it is necessary t o  renormalize t h e  d i s t r i b u t i o n  

func t ion  i n  order  t o  ob ta in  t h e  p r o b a b i l i t y  dens i ty ,  t h e  i n t e g r a l  of which is 

equal t o  u n i t y  with r e spec t  t o  a l l  ve loc i t i e s .  The methods f o r  obtaining t h e  

random numbers with t h e  known d i s t r i b u t i o n  dens i ty  have been described i n  d e t a i l  

i n  t h e  book C171. 

Subsequently, f o r  t h e  chosen p a r t i c l e  t h e  f l i g h t  t i m e  without c o l l i s i o n  

i n  a given space ce l l  is s e l e c t e d  by a random method. If t h e  c o l l i s i o n  occurs 

in s ide  the  cel l  then ,  by t h e  random method i n  accordance with the  f i e l d  p a r t i c l e  

dens i ty  d i s t r i b u t i o n ,  t h e  ve loc i ty  f o r  t h e  f i e l d  p a r t i c l e  which must c o l l i d e  

with the  tes t  p a r t i c l e  is s e l e c t e d ,  and t h e  c o l l i s i o n  c a l c u l a t i o n  is performed. 

The test  p a r t i c l e  which w e  a r e  observing w i l l  acqui re  a new ve loc i ty  and f o r  i t  

a f r e e  pa th  t i m e  is again sampled. I f  t h e  p a r t i c l e  c rosses  t h e  boundaries of 

t h e  cel l  without any c o l l i s i o n ,  then i n  t h e  next ce l l  t h e  free pa th  t i m e  is 

again sampled. The number of test molecules, t h e  motion of which is observed 

from the  moment of c ross ing  t h e  boundary t o  the  moment of c ross ing  t h e  boundary 

aga in ,  m u s t  be such t h a t  t h e  obtained d i s t r i b u t i o n  func t ion  has a s u f f i c i e n t l y  

small  f l uc tua t ion .  

It is assumed t h a t  t h e  d i s t r i b u t i o n  func t ion  i n  t h i s  ce l l  is propor t iona l  

t o  t h e  time which is spent  by the  tes t  p a r t i c l e s  i n  t h i s  c e l l .  In t h e  course 

of t he  whole i t e r a t i o n  process ,  t h e  t i m e  spent by t h e  test  p a r t i c l e s  i n  each 

ce l l  of t he  phase space is accumulated. If t h i s  quan t i ty  is normalized i n  each 

c e l l  by an appropr ia te  method, then w e  s h a l l  ob ta in  a dens i ty  d i s t r i b u t i o n  i n  

t h e  rfh approximation. A f t e r  a l l  of t he  sampling i n  sequen t i a l  i t e r a t i o n  is 

completed the  c ross -sec t iona l  a rea  A A  of the  phys ica l  space c e l l  is s e l e c t e d  i n  

order  t o  renormalize t h e  obtained d i s t r i b u t i o n  function. 

In solving t h e  hea t  t r a n s f e r  problem AA is s e l e c t e d  i n  such a way t h a t  t he  

average dens i ty  of t h e  tes t  p a r t i c l e s  i n  the  s e l e c t e d  space between two w a l l s  

is of predesigned magnitude. In t h e  s tudy  of t he  s t r u c t u r e  of a shock wave 

AA is se l ec t ed  on t h e  bas i s  of t he  condition t h a t  t h e  m a s s  flow of test mole- 

cu le s  through a u n i t  area a t  the  boundary corresponds t o  t h e  ac tua l  m a s s  flow. 

A t  t he  end of each i t e r a t i o n  moments of t he  d i s t r i b u t i o n  func t ion  are 

ca lcu la ted .  In t h e  c a l c u l a t i o n  process ,  it is necessary t o  remember t h e  

d i s t r i b u t i o n  func t ion  of two i t e r a t i o n s .  The i t e r a t i o n  process is completed 
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when t h e  determined moments of t he  d i s t r i b u t i o n  func t ion  i n  two successive 

i t e r a t i o n s  coincide. 

Haviland and Lavin solved t h e  heat t r a n s f e r  problem between two p a r a l l e l  

p l a t e s  and the  problem of t h e  s t r u c t u r e  of shock waves f o r  s o l i d  spheres and 

Maxwell's molecules. 

The c a l c u l a t i o n  e r r o r s  may be subdivided i n t o  two c l a s s e s ,  s t a t i s t i c a l  and 

systematic. The sys temat ic  e r r o r s  are assoc ia ted  with the  choice of t h e  d i -  

mensions of t h e  ce l l ,  replacement of t h e  d i s t r i b u t i o n  func t ion  by a s t e p  func t ion ,  

inaccurate c a l c u l a t i o n  of t h e  i n t e g r a l ,  which represents  t h e  c o l l i s i o n  

frequency,and o the r  de t e rmin i s t i c  effects. The s t a t i s t i ca l  e r r o r s ,  which occur 

due t o  the l imi ted  number of games played, decrease as l/N-', where N is t h e  

number of games. Their e f f e c t  may be determined experimentally. 

In t h e  majority of cases i n  solving these  problems n o n s t a t i s t i c a l  

f l uc tua t ions  a r e  observed, t he  magnitude of which is s i g n i f i c a n t l y  g r e a t e r  than 

the  magnitude of t he  assumed s t a t i s t i c a l  f l uc tua t ions .  The s t r u c t u r e  of these  

f luc tua t ions  depends, p r imar i ly ,  on the  form of the  zero i t e r a t i o n .  Apparently 

t h e i r  occurrence is assoc ia ted  with the  Markoff's nature of t he  i t e r a t i o n  

ca l cu la t ion  process. 

Such methods have one more drawback. When the  Knudsen number is decreased 

s i g n i f i c a n t l y ,  t h e  computation t i m e  increases  and the  accuracy of t he  method 

decreases. Apparently, t he  Monte Carlo methods of t h i s  type give the  bes t  

r e s u l t s  i n  the  inves t iga t ion  of f r e e  molecular and nearly f r e e  molecular 

flows. 

In solving even one-dimensional problems by the  Monte Carlo method, it is 

necessary t o  have access t o  a l a rge  opera t iona l  memory. For pseudo-Maxwell's 

molecules, t he  c o l l i s i o n  c ros s  s e c t i o n  of which has the  form cr = OOg0/g. 

V. I. Vlasov C181 has shown t h a t  one can s i g n i f i c a n t l y  reduce the  s i z e  of the  

required memory. For these  molecules t h e  c o l l i s i o n  frequency is independent of 

p a r t i c l e  ve loc i ty ,  and t h e  probable ve loc i ty  of t he  molecules which 

c o l l i d e  with t h e  test molecule is propor t iona l  t o  the  d i s t r i b u t i o n  func t ion  of 

t h e  molecules i n  a given c e l l  of t h e  phys ica l  state. In re ference  [18], t h e  

ve loc i ty  of t h e  t e s t  molecules which passed through a given ce l l  o r  phys ica l  

state w a s  remembered withl . /V p r o b a b i l i t y ,  and when the  next c o l l i s i o n  w a s  

sampled, t h i s  ve loc i ty  w a s  taken as t h e  ve loc i ty  of t h e  molecule which c o l l i d e s  
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with the test molecule. In fact, in solving the heat transfer problems between 

plates, seven molecules were remembered in each of the geometric cells. The 

obtained results were practically coincident with the results of Lavin and 

Haviland. 

In the work of Perlmutter El91 another method is proposed for reducing the 

required memory of the electronic digital computer. In solving the flow problem with 

the Couette method, analogous to the Haviland and Lavin method, it was pro- 

posed that the distribution of field molecules has the form of a double-flow 

Maxwell distribution, first proposed by Lees [201. In this case, it is neces- 

sary to remember only four parameters p c , which enter in this 
distribution for each of the cells of the physical state. The meanings of these 

parameters are: density and temperature of molecules with positive or negative 

projections of the velocity upon the coordinate axis, perpendicular to the walls 

respectively. Perlmutter's results coincide with the results of Lavin and 

Haviland. 

+'  + '  p-9 c- 

The calculation method proposed by Perlmutter is not universal since it is 

strongly dependent on the choice of the approximation function. However, the 

idea of more accurate approximation of the distribution function inside the phase 

space cell apparently deserves some attention. 

The Bird Method. A somewhat different Monte Carlo method was proposed by 

Bird C9-121. In contrast to the method used by Haviland this method does not 

contain iterations. The stationary condition is obtained as the limit of the 

nonstationary flow, which occurs upon instantaneous introduction of a body into 

a homogeneous flow. After a certain period of time, a steady state is achieved. 

The value of the stationary flow may be calculated in the course of long time 

intervals by averaging the quantity in time in order to reduce 

random scatter. In reference [91, the time for the establishment of equilibrium 
of the translational degrees of freedom was evaluated. In reference [lo, lZJ, the 

structure of the shock wave in a gas consisting of solid spheres was calcu- 

lated. In reference [111, the results are given for the calculations of aero- 

dynamic flow past a cylinder, a sphere and a plate. However, in the subsequent 
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work [ l Z ] ,  the  au thor  shows t h a t  c e r t a i n  procedures used i n  [ lo ,  111 w e r e  L11 
1 incor rec t  . 

The essence of t h e  method is as follows. The physical  coordinate  space is 

subdivided i n t o  cells. Severa l  thousand molecules are taken and by the  random 

method, i n  correspondence wi th  preassigned d i s t r i b u t i o n  func t ions ,  a configura- 

t i o n  of molecules is s e l e c t e d  f o r  t he  i n i t i a l  moment of t i m e .  It is assumed 

t h a t  i n s ide  the  physical  space ce l l  a l l  of t he  molecules have the  s a m e  coordi-  

nates.  The ve loc i ty  components of a l l  of t h e  molecules are a l s o  remembered. 

The process of motion and c o l l i s i o n  of molecules is subdivided i n  t i m e ;  it is 

considered t h a t  during t h e  t i m e  i n t e r v a l  A t  only c o l l i s i o n s  i n  a l l  of t h e  ce l l s  

of t he  physical  s ta te  take  place, and s i n c e  t h e  r e l a t i v e  pos i t i on  of  t he  mole- 

cu les  wi th in  the  c e l l  of physical  space is neglected,  t he  p robab i l i t y  of t h e i r  

c o l l i s i o n  depends only on t h e i r  r e l a t i v e  ve loc i t i e s .  A p a i r  of molecules i n  the  

considered physical  space ce l l  is se l ec t ed  by a random method. It remains the re  

with a p robab i l i t y  propor t iona l  t o  r e l a t i v e  veloci ty .  I f  t he  p a i r  remains t h e r e ,  

t he  c o l l i s i o n  ca l cu la t ion  is c a r r i e d  out  and the  new ve loc i ty  components of t he  

co l l i d ing  molecules are recorded. The number of c o l l i s i o n s  is determined as the 

quot ien t  from dividing A t  by A t ,  where A t  is the  mean t i m e  between c o l l i s i o n s  

for a given c e l l  of t he  physical  space per  molecule. The t i m e  i n t e r v a l  A t  is 

taken t o  be s i g n i f i c a n t l y  s m a l l  than t h e  average t i m e  between c o l l i s i o n s .  

m 

m 

m 

A f t e r  a l l  t h e  c o l l i s i o n s  have been completed, t he  ove ra l l  t i m e  is increased 

by A t m  and a l l  molecules are moved by an appropriate  dis tance.  

t he  molecules are e i t h e r  generated with a corresponding dens i ty  d i s t r i b u t i o n  o r  

are annih i la ted  i f  they f a l l  ou ts ide  the  boimdaries of the  given region. 

A t  the  boundaries 

In  ca l cu la t ing  shock wave s t r u c t u r e ,  it w a s  discovered t h a t  t he  r e s u l t s  

are l i t t l e  dependent on the  choice of ce l l  dimensions. The comparison of t he  

dens i ty  p r o f i l e  when M = 1.5 with the  dens i ty  p r o f i l e  obtained by t h e  Navier- 

Stokes equat ion shows t h a t  n o n s t a t i s t i c a l  o s c i l l a t i o n s  behind the  shock wave 

are s m a l l .  Calculat ions w e r e  made f o r  t h e  shock wave 

~ 

1. Apparently, as a r e s u l t  of t h i s ,  some indiv idua l  r e s u l t s  i n  [ll] are not 
even i n  q u a l i t a t i v e  agreement wi th  the  already ava i l ab le  data .  However, 
s a t i s f a c t o r y  r e s u l t s  i n  [ l 2 ]  lead us t o  be l ieve  t h a t  a f te r  cor rec t ing  t h e  
e r r o r  t h i s  method can produce more accurate  r e s u l t s .  
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with  Mach numbers ranging from 1.5 t o  10. The longi tudina l  and t ransverse  

d i s t r i b u t i o n  func t ions  are represented a t  seve ra l  po in t s  of t h e  shock wave 

f ron t .  When t h e  Mach number is t e n ,  t h e  d i s t r i b u t i o n  func t ion  has two m a x i m a ,  

and the  dens i ty  p r o f i l e  of t h e  shock wave is not  as steep as predic ted  by t h e  

Navier-Stokes equat ion or t h e  Mott-Smith so lu t ion .  The t i m e  requi red  f o r  cal- 

cu la t ing  shock wave s t r u c t u r e  on a WF-9 computer w a s  20 minutes. 

The Nordsieck. Method. In solving Boltzmann equat ion by t h e  i t e r a t i o n  

methoc;, t he  c o l l i s i o n  i n t e g r a l  ca l cu la t ion  is t h e  most d i f f i c u l t .  Nordsieck 

[ 2 l ]  proposed a Monte Carlo method f o r  t h e  ca l cu la t ion  of t h e  complete f i v e -  

dimensional c o l l i s i o n  i n t e g r a l  f o r  s o l i d  spheres  i n  a x i a l l y  symmetric flows. 

H e r e ,  the  c o l l i s i o n  i n t e g r a l  i n  ve loc i ty  space depends on two parameters 

u V (where u is the  ve loc i ty  of molecules along the  axis of symmetry and V 

is the  ve loc i ty  of molecules perpendicular  t o  the  a x i s  of symmetry). In  order  

t o  acce le ra t e  t he  count ,  e igh t  uniformly d i s t r i b u t e d  q u a n t i t i e s  are immediately 

generated ( t h r e e  q u a n t i t i e s  give the  value of t h e  parameter f o r  which the  

i n t e g r a l  is ca l cu la t ed ,  while t h ree  o thers  give a po in t  i n  which the  i n t e g r a l  

func t ion  is being ca l cu la t ed ,  t he  two remaining q u a n t i t i e s  are t h e  c o l l i s i o n  

parameters of the  molecules) ,  and the  i n t e g r a l s  f o r  a l l  256 values of u and V 

are ca lcu la ted  ( i n  the  case of f ixed  value of a l l  physical  coord ina tes ) .  This 

allows one t o  increase  the  number of t o s ses  through t h e  use of symmetry of 

c o l l i s i o n s  without add i t iona l  a r i thmet ic  operat ions.  The r e s u l t s  of t h e  

ca l cu la t ions  of t h e  i n t e g r a l s  are subsequently smoothed by t h e  least squares  

m e t  hod. 

X 1  X 

X 

The reference shows prel iminary r e s u l t s  of t h e  ca l cu la t ions  of the  problem 

of r e l axa t ion  and shock wave s t ruc tu re .  In  re ference  [22], it w a s  shown 

by means of t h i s  program how the  Mott-Smith method s o l u t i o n  f o r  shock wave 

s t r u c t u r e  gives  a nonsensical  so lu t ion .  Unfortunately,  i n  t he  work which is 

ava i l ab le  t o  u s ,  t he re  is very l i t t l e  da ta  t o  judge t h e  advantages of t h i s  

method as compared wi th  o the r  Monte Carlo methods. 

One more v a r i a t i o n  of t he  Monte Carlo method w a s  proposed by Gentry, 

Harlow and Martin [23] f o r  modeling a flow wi th  a t ransverse  ve loc i ty  g rad ien t ,  

when the  p a r t i c l e s  are moving between two p lane-para l le l  w a l l s .  However, due 

t o  the  l imi t a t ions  of t h e  computers, t he  numerical experiments which w e r e  

described w e r e  performed f o r  an assembly of two-dimensional molecules, which 
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i nd ica t e s  the  low economic e f f i c i ency  of t h e  method. 

T h e A n t e -  Car lo  method for solving_-the r e m i o n  problems i n  homogeneoils 

space. One of t h e  s i m p l e s t  problems f o r  t h e  Boltzmann equat ion is t h e  relaxir- 

t i o n  of some d i s t r i b u t i o n  func t ion  i n  homogeneous space t o  t h e  Maxwell  

d i s t r i b u t i o n  function. In  t h e  work of Alder and Wainwright [ 4 ,  51, t h e  

so lu t ion  of such a problem was modeled as fol lows:  t he  motion and the  c o l l i -  

s i o n  of a s m a l l  number of molecules (of t he  order  of one hundred) i n  a cubic  

ce l l  w a s  considered. If any of t h e  molecules crosses  t h e  boundary, it is 

considered t h a t  an  exac t ly  i d e n t i c a l  molecule e n t e r s  t h e  ce l l  through an 

opposi te  face of t h e  cllbic ce l l  (pe r iod ic i ty  condi t ion) .  In  t h i s  modeling 

process coordinates  and v e l o c i t i e s  of a l l  molecules are remembered. The r a t i o  

of t h e  number of molecules i n  a given ve loc i ty  i n t e g r a l  t o  the  number of 

molecules i n  t h i s  ve loc i ty  i n t e r v a l  a t  equi l ibr ium is a func t ion  of t h e  number 

of co l l i s ions .  The s a m e  problem w a s  solved by Bird by an aiialogous method 193, 

but i n  con t r a s t  t o  t he  work of Alder and Wainwright, he kept  only the  ve loc i ty  

of molecules i n  t h e  memory. This enabled him t o  obta in  r e s u l t s  with high 

accuracy. In  genera l ,  they are i n  good agreement with the  r e s u l t s  of 151. An 

i n t e r e s t i n g  conclusion w a s  drawn: the  high-velocity molecules undergo 

r e l axa t ion  most s lowly,  while molecules with v e l o c i t i e s  c lose  t o  t h e  root-mean- 

square ve loc i ty  undergo the  most rapid re laxa t ion .  

L13 

The method developed by Alder and Wainwright with some modification w a s  

used f o r  t he  inves t iga t ion  of r e l axa t ion  i n  a mixture of gases by Polak and 

o thers  C24, 251. A comparison with the  exact so lu t ion  of t he  Boltzmann equation 

131 f o r  these  i n i t i a l  da ta  has shown s a t i s f a c t o r y  accuracy of t he  method. 

Ioshizawa C261 solved the  problem of the  r e l axa t ion  of chemically reac t ing  

gases by the  Monte Carlo method. Instead of considering t h e  c o l l i s i o n  of t h ree  

bodies ,  the  ac t iva t ed  molecule method w a s  used. Only th ree  types of c o l l i s i o n s  

w e r e  considered: e las t ic ,  i n e l a s t i c  and ac t iva ted ;  a l l  molecules and atoms w e r e  

modeled by s o l i d  spheres.  The r e l axa t ion  phenomenon w a s  modeled by observing 

the  c o l l i s i o n s  of a s m a l l  number of particles (of t he  order  of 50). For each 

type of p a r t i c l e ,  t h r e e  components w e r e  remembered: ve loc i ty ,  type of 

p a r t i c l e  and i ts  i n t e r n a l  energy. I n i t i a l l y ,  t he  type of p a r t i c l e  w a s  drawn, 

followed by its ve loc i ty  and mean free pa th  and f i n a l l y  t h e  i n t e r n a l  energy of 

t h e  molecule when necessary. Subsequently, by an analogous method, t h e  L14 
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c h a r a c t e r i s t i c  of t h e  second p a r t i c l e  w a s  drawn and t h e  v e l o c i t y  of both 

p a r t i c l e s  after c o l l i s i o n  w a s  ca l cu la t ed ;  t h e  r e s u l t s  of t h e  r eac t ion  w e r e  pu t  

i n t o  t h e  memory. 

A t ,  which is s i g n i f i c a n t l y  s h o r t e r  than t h e  r e l a x a t i o n  t i m e .  

h i s t o r i e s  of a l l  test p a r t i c l e s  w e r e  observed, new d i s t r i b u t i o n  d e n s i t i e s  of 

p a r t i c l e s  a n d i n t e r n a l  energy w e r e  ca lcu la ted .  From t i m e  t o  t i m e ,  t h e  

values of c e r t a i n  moments w e r e  ca l cu la t ed  and p r i n t e d  out. Due t o  t h e  s m a l l  

number of p a r t f c l e s  large f l u c t u a t i o n s  w e r e  observed, p a r t i c u l a r l y  near e q u i l i -  

brium. The author expresses t h e  opinion t h a t  t hese  f l u c t u a t i o n s  are assoc ia ted  

with the  Markoff na ture  of t h e  proposed Monte Carlo method. 

The behavior of t h i s  p a r t i c l e  w a s  observed over a period of time 
A f t e r  t h e  

2. Discrete Veloc i t iks  -F&t_ha 

The d i s c r e t e  v e l o c i t i e s  method w a s  proposed by Chandrasekhar and w a s  

u t i l i z e d  success fu l ly  i n  Solving problems i n  t h e  theory of r a d i a t i o n  and the  

theory of neutron t r anspor t .  In problems on the  flow of r a r e f i e d  gases, it w a s  

first used i n  t h e  work of Broudwell [27, 281, but only a t  a very approximate 

leve l .  A t  p r e sen t ,  t h e  d i s c r e t e  ord ina te  technique is used success fu l ly  i n  

so lv ing  the  model Krook equation C291. 

B. H a m e l  and M. Wachman using t h i s  method f o r  t he  l i n e a r i z e d  Boltzmann 

equation solved t h e  problem Of Couette flow [30], and then a nonlinear 

r e l axa t ion  problem C311. 

Let us consider t h e  las t  work i n  greater d e t a i l ,  s i n c e  t h i s  i n  essence is 

the  f i r s t  attempt t o  use t h e  d i s c r e t e  ve loc i ty  technique f o r  t h e  nonlinear 

Bo ltzmaiin equation. 

+ 
Let f ( V )  be t h e  d i s t r i b u t i o n  func t ion  f o r  which t h e  Boltzmann equation can 

be wr i t ten  as usual. The i n t e g r a l  is ca l cu la t ed  by t h e  r e i t e r a t i o n  method, 

where i n  c a l c u l a t i o n  of t h e  i n t e g r a l  from the  c o l l i s i o n  parameters quadrature,  

Laguerre equations w e r e  used, and i n  c a l c u l a t i o n  of t h e  ve loc i ty  i n t e g r a l s  

Gauss-Hermite quadrature equations w e r e  used. Af te r  a1 of t h e  i n t e g r a l s  w e r e  

ca l cu la t ed  i n  a l l  nodes, t he  derived system of d i f f e r e n t i a l  equations w a s  

solved by the  Lantsosh method. Thus, t he  value of t h e  d i s t r i b u t i o n  func t ion  

a t  t h e  moment t + A t  w a s  calculated.  

-t 
Let us introduce t h e  func t ion  Y ( V )  by t h e  following method: 
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Then the Boltzmann equat ion w i l l  acqui re  t h e  form 

A s  t h e  i n i t i a l  condi t ion  when t = 0 w e  s t i p u l a t e  Y ( V ) .  
0 

In  t h i s  work, t h e  d i s c r e t e  ord ina te  technique w a s  adapted t o  t h e  s o l u t i o n  

I n  the  (n  - l)m i n t e r v a l ,  of t h i s  very type of problem wi th  the  i n i t i a l  data.  

t h e  ca l cu la t ed  d i s t r i b u t i o n  func t ion  Y ( V )  is remembered i n  some network of 

V values. Subsequently,  t h e  c o l l i s i o n  i n t e g r a l  is ca lcu la ted  on the  bas i s  of 

t h i s  function. In  such ca l cu la t ion ,  it is necessary t o  know t h e  value of t he  

d i s t r i b u t i o n  func t ion  outs ide  t h e  nodes; t he re fo re ,  it is necessary t o  use the  

in t e rpo la t ion  method o r  ex t r apo la t ion  formulas. The r e s u l t s  of ca l cu la t ions  

show t h a t  the  s e l e c t e d  network gives  good r e s u l t s  f o r  Y func t ions  c lose  t o  con- 

s t a n t  ( i .e . ,  f o r  the  i n i t i a l  func t ion  c lose  t o  the  Maxwel l  func t ion) .  Otherwise, 

even when t is equal t o  one c o l l i s i o n  t i m e ,  t he  dens i ty  and temperature decrease 

by 10% and revea l  a tendency t o  f u r t h e r  decrease.  Therefore,  ca l cu la t ions  are 

c a r r i e d  out  u n t i l  t = 1, although on t h e  bas i s  of the  ex t r apo la t ive  eva lua t ion  

of t he  author  complete r e l axa t ion  occurs a t  approximately t = 4. It is noted 

i n  the  work t h a t  normal stress behaves i n  the  s a m e  manner as ind ica ted  by the  

model equation. 

+ 
+ 

of 

BO 

ab 

3 .  Other Methods f o r  Solving . .  t he  Boltzmann Equation 

F. G. Cheremisin and Y e .  M. Shakhov, s t a f f  members of t h e  Computer Center 

the  Academy of Sciences of the  USSR, proposed o the r  methods f o r  solving the  

tzmann equat ion,  s i g n i f i c a n t l y  d i f f e r e n t  from those which w e r e  d iscussed 

ve . 

. -  _ _  -~ __-.. 

F. G. Cheremisin [14] proposes the  use of t he  i t e r a t i o n  process f o r  t he  

k i n e t i c  equat ion,  w r i t t e n  i n  the  i n t e g r a l  form, which includes the  p r o b a b i l i t i e s  

of free paths  of t he  molecule. 

Assuming t h a t  t h e  nm i t e r a t i o n  is s u f f i c i e n t l y  c lose  t o  t h e  accura te  

s o l u t i o n ,  t he  moment of t h e  d i s t r i b u t i o n  func t ion  i n  an approximate form of the  

func t ion  i t se l f  is expressed taking i n t o  account t he  boundary condi t ions  i n  the  
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form of a network of successive approximations directly through the distribu- 

tion function of the zero approximation. Since the zero approximations for 

the distribution function as a function of the velocity of molecules may be 

assigned in analytical form, such an approach gives the possibility of solving 

the problem on an electronic digital computer with limited operational memory. 
L16 

However, the essence of the proposals of F. G. Cheremisin is not limited 

to the reduction of the required machine memory. In order for the machine time, 

which increases inadmissibly with an increase in the number n, to be applicable 

in practice, the Monte Carlo method with a sufficiently small number of trials 

(where the number could be smaller as the number of iterations of the distribu- 

tion function becomes smaller, from which the integrals are calculated) is 

proposed [14] for calculations of the internal integrals from molecular velocity 

and collision parameters. The calculations which were made by the author for 

the relaxation and the shock wave structure problems have shown that when the 

number of random points for the calculation of the integrals of the lowest link 

in the chain (from the initial distribution function), is several tenths, and 

sometimes several units, a satisfactory accuracy of the result is achieved. The 

integration of space variables and calculation of the distribution functions 

moments are carried out by the regular method. 

Apparently, the number of iterations n is smaller, the closer the initial 

function is to the precise value. As the initial approximation, it is proposed 

that solution of Krook's relaxation equation be used. The author hopes that 

his proposed method for numerical solution of the Boltzmann equation will allow 

solution of the problem of the theory of rarefied gases using modern computers 

in a practically reasonable time. 

Ye. M. Shakhov proposed a fundamentally different method for solving the 

Boltzmann equation [l5, 161. The difficulties associated with the solution 

of the Boltzmann equation result not only from the large number of independent 

variables, but also from the complex structure of the collision integral. It 

was proposed in [l5] that the collision integral be approximated in the moment 

sense (i.e., S O  that the several first moments from the approximate and from the 

Boltzmann collision operators would coincide). The equation for the dis- 

tribution function with an approximate, in the moment sense, collision operator 

is an equation approximating the Boltzmann equation. Consequently, the 
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distribution function which satisfies this equation is an approximate solution 

of the Boltzmann equation. It is assumed that the approximation accuracy 

increases with an increased number of moment relationships for the collision 

operator. 

Apparently, in such an approximation several first moment equations from 

the approximate kinetic equation and from the precise Boltzmann equation will 

coincide, and there will be as many coincident equations as there are first 

moment relationships fulfilled for the collision integral. Since in the 

rarefied gas mechanics, the principal interest lies in a few first moments of 

the distribution function in that region which makes the principal contribution 

to the magnitude of these moments, one can hope that in the approximation one 

should limit oneself to moment relationships which include power monomials of 

the molecular velocity components not higher than of the third degree. The 

results of the author's calculations for the relaxation problem confirm this 

viewpoint. 

L17 

The form of the approximate collision operator is not determined by 

moment relationships of the type described above. 

The approximation is directly reduced to replacing the reverse collisions 

integral and collision frequency by suitable expressions dependent on the 

molecular velocities and on some set of macroscopic quantities. The macro- 

parameters which are included in the reverse collisions integral are determined 

by the moment relationships. The collision frequency is approximated with 

sufficient accuracy for many problems by the corresponding expressions for the 

local-Maxwell distribution function. I n  case of necessity, deviations from 

this expression may be found by utilizing the moment relationships separately 

for the direct collisions integral. Another method for approximating collision 

frequency through the distribution function moments involves expansions for low 

and high velocities. 

The integrals from the collision integral may be expressed with sufficient 

accuracy through the distribution function moments; this significantly reduces 

the required computation time. 

Thus, the approximating equation in each approximation has a structure 

similar to the structure of the Krook relaxation equation in that the reverse 

collision integral and collision frequency are explicit functions of molecular 



v e l o c i t i e s  and d i s t r i b u t i o n  func t ion  moments. U s e  of t he  d i s c r e t e  v e l o c i t i e s  

method is proposed f o r  numerical s o l u t i o n  of t h e  approximate equation i n  any 

approximation. 

Summary Ll8 

The review considers t h e  p r i n c i p a l  attempts t o  ob ta in  the  numerical s o l u t i o n  

or modeling of t h e  Boltzmann equation over a broad range of Knudsen numbers. 

The review of these  r e s u l t s  shows t h a t  only i n i t i a l  s t e p s  have been taken i n  the  

area of t h e  development of numerical methods. The proposed methods are a t  

d i f f e r e n t  s t ages  of t h e i r  development and many r equ i r e  a s i g n i f i c a n t  improvement. 

In the  p re sen t ly  most popular Monte Carlo methods, t h e  equivalency of t he  

obtained s o l u t i o n s  and t h e  s o l u t i o n  of t he  Boltzmann equation has not ye t  been 

proven. One can say  t h a t  t he  proposed method is q u i t e  l o g i c a l  and t h e  r e s u l t s  

appear reasonable. However, i n  a l l  t h e  s o l u t i o n s  assoc ia ted  with these  methods, 

n o n s t a t i s t i c a l  f l u c t u a t i o n s  occur i n  the  a rea  of high d e n s i t i e s ;  t h e  na ture  of 

these  f l u c t u a t i o n s  is not ye t  c l ea r .  The Monte Carlo methods are not w e l l  

s u i t e d  i n  the  a rea  of small  Knudsen numbers. In t h i s  ca se ,  t he  d i s t r i b u t i o n  

func t ion  must be c lose  t o  t h e  local-Maxwell func t ion ,  and the  c o l l i s i o n  i n t e g r a l  

must be c lose  t o  zero. Here a l l  of t h e  ca l cu la t ions  assoc ia ted  with c o l l i s i o n s  

are conducted t o o  coa r se ly ,  which leads t o  i n s u f f i c i e n t l y  accura te  d i s t r i b u t i o n  

func t ion  ca lcu la t ion .  It is poss ib le  t h a t  t h i s  i n  f a c t  determines t h e  f luc tua -  

t ions. 

Among the  Monte Carlo methods, t he  Bird method appears t o  be most a t t r a c t i v e ,  

s i n c e  it is more d i r e c t l y  r e l a t e d  t o  the  Boltzmann equation. However, it a l s o  

has the same drawbacks. Like o ther  Monte Carlo methods, it gives t h e  bes t  

r e s u l t s  under t h e  condi t ions  which a r e  c lose  t o  t h e  free molecular state.  

The Nordsieck method is unique among o the r  Monte Carlo methods, but it is 

s t i l l  d i f f i c u l t  t o  judge its merit due t o  t h e  u n a v a i l a b i l i t y  of t h e  r e s u l t s  

obtained with it. 

A l l  of t he  Monte Carlo methods a r e  charac te r ized  by slow convergence 

and one cannot expect t o  obta in  highly accura te  r e s u l t s  with t h e i r  use. G r e a t  

p o s s i b i l i t i e s  a r e  a f forded  i n  t h i s  sense by the  de t e rmin i s t i c  methods. These 
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methods include the discrete ordinate technique. The direct use of this method 

for solving the Boltzmann equation shows that in order to obtain the required 

accuracy exceedingly large computer times are required in calculating the 

collision integral. The use of approximating equations in combination with the 

discrete velocities method will possibly improve computation accuracy and reduce 

the required memory volume. 

In summary one should say that all the methods considered in this review 
are applicable at best to solution of one-dimensional problems. The possibility 

for the practical applications to the solution of two-dimensional problems in 

the theory of rarefied gases has not yet been proven. 
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SOME SPATIALLY HOMOGENEOUS GAS MOTIONS 

V. A. Rykov and F. G.  Cheremisin 

A s tudy  of t h e  s imples t  p rec i se  so lu t ions  of t he  Boltzmann k i n e t i c  - /22 

equation w a s  undertaken i n  El-31. 

For t h i s  so lu t ion  it is c h a r a c t e r i s t i c  t h a t  i n  going t o  t h e  c h a r a c t e r i s t i c  

v e l o c i t i e s  of p a r t i c l e s ,  t h e  dependence of t h e  d i s t r i b u t i o n  func t ions  on 

s p a t i a l  coord ina tes  vanishes. 

I s o l a t i o n  of such a class of s p a t i a l l y  homogeneous s o l u t i o n s  is of i n t e r e s t  

due t o  t h e  s i g n i f i c a n t  reduct ion  i n  t h e  number of independent v a r i a b l e s ,  

which permits t h e  use of e l e c t r o n i c  d i g i t a l  computers for obta in ing  numerical 

so lu t ions  of t h e  k i n e t i c  equation. 

In t h i s  work a func t iona l  equation i s  derived f o r  a s p a t i a l l y  homogeneous 

d i s t r i b u t i o n  func t ion  and examples of s p a t i a l l y  homogeneous gas motions 

a r e  considered. Numerical c a l c u l a t i o n  was conducted f o r  one such motion 

with t h e  use of a model equation. 

1. Determination of S p a t i a l l y  Homogeneous Solu t ion  - 

In t h i s  s ec t ion  w e  s h a l l  depart  temporarily from t h e  Boltzmann 

equation and introduce t h e  concept of a s p a t i a l l y  homogeneous s o l u t i o n  of 

some equation, 

L ( f )  = 0 (1) 

where L ( f )  i s  some opera tor  of t h e  sought func t ion  F ( t , x , y , z ) ,  where t is 

t h e  time and x, y ,  and a are space coordinates.  This opera tor  conta ins  t h e  

d e r i v a t i v e  of f with respec t  t o  va r i ab le  t only of t h e  first o rde r ;  no o the r  

assumptions are made about i t s  form. 

Equation (1) may be d i f f e r e n t i a l  o r  i n t eg ro -d i f f e ren t i a l .  

Assume t h a t  equation (1) allows formulation of t h e  Cauchy-problem with re- 

spec t  t o  va r i ab le  t ,  and assume t h a t  a unique s o l u t i o n  e x i s t s .  W e  can con- / 2 3  

s i d e r  the  i n i t i a l  func t ion  assigned a t  the  t i m e  t = to: 
- 

(2) 
f c  t = t ,  ? x, y, z )  = fo  (x, y, 2) 

( - - < X < + m ,  -00 < y < + m ,  -co < Z < C W ) . .  



Definition 1. The Cauchy problem is called spatially homogeneous if, for 

z ) in the Oxyz system, there exist transformations of time, 
0’ Yo’ 0 

T ( t  z X o a  Y o s z o  1 s  

any point (x 

coordinates, and the sought function 
t ‘  = 
y = Y( t , x 

X ’ =  x ( t  3 x 2 y a z a x 0 s yo s z 0 z ‘ = z(  t 3 Y *  xo* YO,  20)s 

y 8 z a xn J yna 20 a f ‘ = a ( t a xs Y, z s f ; xo yo a z 0 1, 

0’ Yo’ o, yo,  z ) and when t = t dependent on this point (x 

z ) to the origin of the new coordinate system O’xtytz’ and the time t = t to 
0 0 
tt = t so that equation (1) and the initial function ( 2 ) ,  written in the new 

sought functions and variables, will coincide with the initial ones. 

moving the point (x 
0 0 

0 

The new independent variables and the sought functions will be differen- 

tiated from the originals by primes. It is apparent from the definition that 

in the new coordinate system, whose origin at the time t = t is placed at a 

randomly selected point (x o, yo, z o ) ,  we have a Cauchy problem identical to the 

case with the original coordinate system, i.e., 

0 

The initial function of such a Cauchy problem will be called spatially 

homogeneous. Apparently, the transformation described in definition 1 must 

belong to the class of invariant transformations of equation (1). 

Let the known invariant transformation of equation (1) be 

where s ..., d are random constants. 
1’ 9 

Definition 1 requires that the following condition be fulfilled: 

( 4 )  I T(to,  s 1 8  ..s, s k )  = t o ;  X(t,, x O ,  YO Y z O t  a 1, * * * Y  O; 

Y(to ,  xo ,  y o ,  20, b,, **., b , )  - 0; 

a t o ,  x o ,  yo , Z O Y  c 1 s  ’**, c n )  IO.. 
In general, these conditions enable us to consider only k+l+m+n+q-4 constants 

as random constants. Let us assume that they are random functions of parameters 
L24 

X0’ Yo’  Z 0’ 

If the variables t, x, y, z are not explicitly in equation (11, it will 

remain invariant in the case of random change in the origin of both time 

t and coordinates x, y, z. Therefore, conditions ( 4 )  can always be 
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satisfied if one includes the transformation of the changes in the origin of 

variables t, x, y, z in equation ( 3 ) .  

Let us now use the transformation of ( 3 )  under the condition ( 4 )  in 

obtaining a spatially homogeneous initial function. 

This will complete the formulation of a spatially homogeneous Cauchy 

problem for equation (1). The initial function f (x, y, z )  must remain invariant 

in the case of transformation ( 3 ) ,  and obey condition ( 4 ) .  This requirement 
leads to a functional equation for determining f (x, y, z ) :  

0 .  

0 

0' where the random constants are functions of the parameters x o'  Yo and 
The solution of this equation defines the spatially homogeneous initial 

function. It follows that a spatially homogeneous Cauchy problem for equation 

(1) exists if there is an invariant transformation for equation (1) which 

satisfies condition ( 4 )  and if there is a solution of the functional equation 

(5).  

The solution of the spatially homogeneous Cauchy problems for equation (1) 

will be called a spatially homogeneous solution. 

Assume that we know the solution of the spatially homogeneous Cauchy 

problem 

f =  f ( t Y  x, Y, 2). ( 6 )  

Then the solution of the spatially homogeneous Cauchy problem after the 

transformation to the new variables t', X I ,  y', z ' ,  and of the sought function 

f', will have the same form, i.e., 

f '  = f(t', x ', y 'I 2 ' )  (7) 

Applying the inverse transformation in the obtained solution (7) to the 

old independent variable and sought function, we must, due to the uniqueness 

of the Cauchy problem solution, obtain a solution for (6). It therefore follows 

that the function f(t, x, y, a )  must satisfy the following functional equation: 

f[ T ( t ,  s 1 y - * * y  S k ) t  X ( t y  X t  Y y  Z, a 1' * * * t  

Y ( t ,  X, y,  Z, b1 y s.9,  b , , l ) , Z ( t ,  X ,  ~t 2, c 1 r * * 9 t  C,,)1 ,= 

f), 
(8) 

= m, x,  y, z ,  fer, 1, Y, z), d d , l ,  
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where T(t, sl, .. . , sk), X(t, x, y, a ,  al, . .. , a!), Y(t, x, Y, a ,  bl, . .. , bm) 
and Z(t, x, y, a ,  cl, ..., c ) obey condition ( 4 1 ,  and the random constants are 

the functions of the parameters x 

spatially homogeneous Cauchy problem exists for equation (11, due to the unique- 

ness of the Cauchy problem solution transformation (31,  which satisfies condi- 

tion ( 4 ) ,  it must be mutually unique. 

n 
It should be noted that if a 

0-  
and z 

0’ yo 

In solving equation ( 8 ) , .  the random dependence of constants on parameters 

is made more specific, due to the known existence of a solution. x 

It can be shown that if the solution of equation ( 8 )  exists, it has the form 

f = Y[t, x, y, z ,  T(t, x, y, z)], where Y is randomly dependent only on the 
variables T(t, x, y, z), where the following is valid for T ( t ,  x, y, z): 

yo and z 
0 ’  0 

z( t ,x ,y ,z )  = .c(t*,x’,$,z’); T(to,x,y,Z)= -to = cons t ,  

where t’, X I ,  y l ,  and z1 are defined by equation ( 3 ) .  

Substituting the solution of equation (8) into equation (1) and requirinq 
the latter to be satisfied, we obtain an equation for determining the dependence 

of the sought function on variable 7 with initial condition 7 = To. 

Thus, the spatially homogeneous Cauchy problem is reduced to the Cauchy 

problem for some function dependent on only one variable. 

This result, although presented for a homogeneous equation involving a 

given function of three coordinates and time, can easily be applied to the 

Boltzmann equation; this is done below in an examination of specific examples. 

2 .  Consideration of Examples of SpaLially- Homogeneous Moticng 

The kinetic Boltzmann equation for the distribution function of molecular 

velocities of a monatomic gas has the form [41: 

where x, y, z are Cartesian coordinates ; t is time, u, v, w are velocity 

components, and J(f) is the collision integral. 
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V 
The g a s  p a r t i c l e s  i n t e r a c t  with each o ther  according t o  E’ = x/r . 
L e t  u s  first cons ider  t h e  caee when t h e  d i s t r i b u t i o n  func t ion  f 

depends only on one coord ina te  x, t i m e  t ,  and three v e l o c i t y  components 

u, v, and w. Equation (9) w i l l  be wr i t t en :  

L e t  u s  transform t h e  sought func t ion  and v a r i a b l e s  

where ~ 0 ,  a, and y are random constants.  After t h e  transformation, 

During t h e  transformation d t h e  c o l l i s i o n  i n t e g r a l  i t s  property ind ica ted  

i n  re ference  E11 was app l i ed :  
4 ( 2 - V ) / ( V - I )  J [ u , u , iu, f( u, u , w )I - J[ a 14 nu, a w, f( nu, au, a w)] a 

Assuming t h a t  l+y+4(2-v)/(v-l)  = 0,  w e  f i n d  t h a t  i n  

transformation of (11) with y=(Jv-7) / (v- l ) ,  equation (10) remains invar ian t .  

If w e  f u r t h e r  consider a t o  be a func t ion  of t h e  parameter x we can w r i t e  

t h e  func t iona l  r e l a t i o n s h i p  f o r  t h e  s p a t i a l l y  homogeneous so lu t ion  
0’ 

The so lu t ion  of t h i s  equation has t h e  form: 

f ~ e x p ( -  yhX)cp[ e X d -  h X ) t , e X p ( ~ ~ ) u y e ~ ( h X ) u J e X P ( h X )  w 1  ’ 
where h is  a random constant and cp is a random func t ion  of i ts arguments. 

L e t  us no te  t h a t  a(xo)=exp(Axo). 

Subs t i t u t ing  t h i s  so lu t ion  i n t o  equation (10) w e  ob ta in  

where = = exP( -hX) t ;  I l , r e x p ( h x ) U ;  
v 1 = e x p ( h x ) ~ ;  w 1  = e x p ( h x ) w ,  

i.e., w e  a r r i v e  a t  an equation f o r  t h e  funotion c p ,  now dependent only on fou r  L27 

independent va r i ab le s :  u v w p lay  the  r o l e  of new v e l o c i t i e s  and 

t h e  parameter T, which may be in t e rp re t ed  as t i m e ;  t h e  dependence on the  
1’ 1’ 1 



space coordinates  disappears .  

For equation (12 ) ,  when r = 0, one should ass ign  the  i n i t i a l  func t ion  

Q = v ( u l ,  v l ,  w l ) .  This corresponds t o  the  following i n i t i a l  func t ion  f o r  f :  

f ( t  = 0, X, U, U, W )  = ' p , [ u e x p ( ~ x ) ,  
(13) 

We c a l c u l a t e  t he  i n i t i a l  dens i ty  d i s t r i b u t i o n s  n ,  v e l o c i t i e s  U, V ,  and 

v exp ( AX), IU exp ( ~ x ) ] e x p (  - y AX ) . 

U = U, exp(-  A X ) ;  W = W, exp(- AX); 

V =  V, exp(- AX); T = To exp(-   AX), 

where no, To, Uo,  Vo, Wo are random cons tan ts ,  with "0 and To pos i t ive .  

This motion d i f f e r s  from t h e  motion considered i n  re ferences  [l-31 
i n  t h a t  t h e  dens i ty  and temperature depend on t h e  x coordinate .  

L e t  US proceed t o  the  formulation of a second example of s p a t i a l l y  

homogeneous gas motion. 

Let t h e  d i s t r i b u t i o n  func t ion  f depend on coordinate  z ,  t i m e  t and 

t h r e e  ve loc i ty  components, u, v ,  and w. The Boltzmann equation becomes: 

This equation allows an inva r i an t  transformation 

where z and cp are random constants .  
0 

Transformation (15) s h i f t s  the o r ig in  of t he  physical  coordinate  system 

t o  point  ( 0 , O , z &  and r o t a t e s  t he  coordinate  system i n  ve loc i ty  space - /28 

by the  angle cp about t he  Ow axis .  

zo parameter, w e  can cons t ruc t  a func t iona l  equation f o r  a s p a t i a l i y  

homogeneous so lu t ion  corresponding t o  transformation (151, 

Assuming u) t o  be a func t ion  of the  
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Its so lu t ion  has t h e  form 

f = f ( t ,  I I  coskz + u s i n  kz, - u sinkz i- U C O S ~ Z , Z U ) ,  

where k is t h e  random constant.  

The dependence of cp on zo is as follows: 

t u t i n g  func t ion  (16) i n t o  equation ( 1 4 ) . , w e  ob ta in  

cp = kzo. Subs t i -  

(16) 

where U l = u c 9 s ; t z + ~  s i n k z ;  
The va r i ab le s  u l ,  v l ,  w p lay  t h e  r o l e  of new v e l o c i t i e s  and t is t h e  t i m e .  
The dependence on the  space coordinate z disappears. When t = 0 we can ass ign  

u l =  - - U s i n h z  + ~ c o s k z .  

an i n i t i a l  func t ion  f o r  equaticn (17)  
fc t  = 0 ,  u l ,  U . 1 ,  w) = fO(lllPul,lO). 

Let t h i s  i n i t i a l  func t ion  be such t h a t  

-m - m  

The i n i t i a l  d i s t r i b u t i o n  func t ion  when t = 0 w i l l  be 

f (  t = 0 , u u 1, W )  = fo ( u cos It z i- v s i n  k Z, - u s i n  k z + v cos kz, w 1 . 
Let us c a l c u l a t e  t h e  i n i t i a l  macroparameters: dens i ty ,  ve loc i ty  components, 

a i d  temperature : 

C m  + m  . 
n = 111 fo dududw = JJJ fo du,du.,dw = n o  = c o n s t ;  

- m  -m 

. U - U , c o s h z ;  V = U , s i n k z ;  T - T  = c o n s t ,  

where 
U, = - 1 '  JJ u1 fo d u  , d ~ . ,  d w  = C o n s t .  

n o  - m  

We s h a l l  now show t h a t  i n  t h e  motion process t h e  dens i ty  remains constant.  

In t eg ra t ing  equation (17) with respec t  t o  v e l o c i t i e s  u 1, vl, w between 

-- and +a, w e  obta in  dn /dt = 0,  and consequently n = n1 = no. 
1 
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Multiplying equation (17) by w and i n t e g r a t i n g ,  w e  f i n d  t h a t  dW/dt = 0; /29 - 
when taking t h e  i n i t i a l  condi t ion  i n t o  account, t h i s  g ives  W = 0. 

1' Successively multiplying equation (17) by t h e  c o l l i s i o n  i n v a r i a n t s  u 

vl, (ul-U1) + ( V ~ - V ~ ) ~ + W ~  and in t eg ra t ing  between -- and +a, w e  obta in  t h e  

following moment equat ions :  

2 

u is t h e  Boltzmann constant and m is t h e  g a s  p a r t i c l e  mass. 

The t h i r d  equation, with the  f i r s t  two taken i n t o  account,  gives 

d t  
i.e. 

2 2  where T and u a r e  t h e  T1 and U1 t. V1 values when t = 0. It can be 
10 10 

shown t h a t  
11 = IJ coskz  + V ,  s i n k z ;  V = -!I 1 s i n k z  i VI C O S ~ Z ;  T = T 13 

2 2  2 2  
From these  r e l a t i o n s h i p s  it follows t h a t  U +V 
of t h e  ve loc i ty  modulus is a func t ion  only of t i m e .  

= U1 +VI , i.e., t he  square 

Relationship (18) may 

now be r ewr i t t en  

This  equation expresses t h e  l a w  of conservation of energy f o r  a u n i t  

volume of gas .  The sum of t h e  thermal energy of t h e  g a s  and t h e  k i n e t i c  

energy of t h e  macroscopic motion p e r  un i t  volume is a constant.  

The motion is i n t e r e s t i n g  i n  another r e spec t .  It  enables one t o  
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determine t h e  d i s t r i b u t i o n  func t ion  which is obtained as a so lu t ion  when 

t = m. 

L e t  us  introduce the H ( t )  func t ion  by means of t he  equation [5]: 
+a, 

mt) = jjj- f I n  fd l lr  d v , d w .  
-m 

In  order  t o  obta in  an equation which def ines  t h e  behavior of H ( t ) ,  w e  

mult iply equation (17) by l n ( f e )  and in t eg ra t e  with respec t  t o  the  var iab les  

-m 

Therefore H ( t )  is  a nonincreasing function. 

W e  s h a l l  show t h a t  H ( t )  has a lower l i m i t  and tha t  t he  temperature T1 = 0,  

f o r  which we s h a l l  use t h e  lemma proven i n  t h e  work of Karleman [ 5 ,  p. 271: 

Lemma. L e t  g be t h e  p o s i t i v e  d i s t r i b u t i o n  of mass and \Y be some - 
continuous funct ion.  

Let us consider  t h e  c l a s s  C of continuous 

t h e  condi t ions 

I ( P ~ C L  = A; 
R 

func t ions  cp 2 0,  which s a t i s f y  

(20) 

2 
and l e t  us assume t h a t  t h e  func t ion  'po = aeeY 

c is such t h a t  we have equa l i ty  i n  (21) .  Then f o r  a l l  cp i n  C ,  t h e  

quant i ty  H ( V )  = r v l n c p d ~  -> H(cp,) 

i f  cp 

e x i s t s ,  cy > 0,  'po an element of 

and t h e  equa l i ty  s ign  is v a l i d  only  Q 
i n  t h e  region of t h e  exis tence of b. = 'Do 

In  our case w e  can take  t h e  following as t h e  equa l i ty  of type (2) 
50 , ~ - r  f du,  (111 ., Li :u  .-= n 

From re l a t ionsh ip  (181, it fol lows t h a t  t he  temperature 



Therefore one can t a k e  B = 3nn0. 

form 

. The func t ion  Y should be taken i n  t h e  
T2 - 

m 
-. . .-. .. ----- 

2 Y + ( u l - V 1 )  + w 2 . 3 a y 0  - And 
3 

t h e  func t ion  cpo is taken t o  be t 1 0 ( ! f 1 / 2 7 i ~ T 2 ~ 2 ~ ' i j ) [ - t ~ I ~ 2 / 2 , ~ T 2 ~ .  

Then on t h e  b a s i s  of t h e  lemma, one can write 

f I ( t )  2 FI( 'p, ) = const. 

Thus w e  have e s t ab l i shed  t h a t  H ( t )  has a lower l i m i t .  Since H ( t )  is non- 

increas ing ,  t h e  following inequa l i ty  is v a l i d :  

~ ( t  = 0) 2 H(t) 2 H ( ( P ~ ) s  (22) 

L e t  us introduce t h e  function H((P1), constructed f o r  

% 2 
'pl = t 1 ~ ( t x / 2 n % T ~ )  exp(-m y / 2 x T 1 ) .  

On t h e  b a s i s  of t h e  lemma, t h e  following inequa l i ty  must be f u l f i l l e d :  

H(t)  2 li(~p1) 2 H((P,)* (23) 

It follows from (22) and (23) : t h a t  H( t=O)2H(cp l )2H(cpo) .  

c a l c u l a t i o n s  of H(v ) and H((P ) and s u b s t i t u t i n g  t h e  i n e q u a l i t i e s  i n t o  t h e  

l a t t e r  w e  f i n d  

Having conducted 

1 0 

2, 

(mn;/2nit)exp[-l-?I-i(t =O)!3nol < _ T l ( t )  _ < T 2 ,  
( 2 4 )  

i .e.,  T1 f 0. 

bution func t ion ,  then t h e  inequa l i ty  (24) w i l l  acqui re  t h e  following form 

If t h e  i n i t i a l  func t ion  is t h e  l o c a l  Maxwell d i a t r i -  

m 2  T o  5 T, ( t )  <_To + rx U o  r 

i.e., t h e  gas temperature cannot become lower than t h e  i n i t i a l  

temperature. 

Since H ( t )  is bounded below and is nonincreasing, then l i m  dH/dt = 0. 
t-ko 

Therefore, from equation (191, it follows t h a t  
+- 
JI( l n f J ( f ) d u l d v , d w  20- when t w e  

- 
- w  

The unique so lu t ion  of t h i s  equation is a l o c a l  M a x w e l l  d i s t r i b u t i o n  func t ion:  

f2 'no(nl/2nxT1)% exp I - m [ ( u 1 -  U , )  2 + ( v l  - V,) 2 + w 9 1 / 2 x T l ~ .  

- /32 
2 The l i m i t s  of t h e  d i s t r i b u t i o n  func t ion  f when t -b 03 must be func t ion  f 

with some f i n i t e  va lues  U V and T the re fo re  l i m  df/dt=0. Hence 
t* 1' 1 1' 
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it follows that equation (17), when t = w, will acquire the following form 

This equation must satisfy the limiting distribution function f for u v 

and w values. 
2 1' 1' 

Substituting f2 into the equation and requiring that f be its solution, 

we obtain u V - v U = 0. Since this must be true for any u and v values, 

u = v  = o .  

2 

1 1  1 1  1 1 

1 1  

From equation (18) and the fact that when t = m, U = V = 0 ,  it follows 1 1 2 that T (a) = T2 = To + (m/3tt)U0 . 
1 

Thus, we found that the limiting distribution function in u, v, and w 

has the form: 
[ ( L = > ,  1 1 ,  V ,  [I') .= I I ~ ~ ~ ~ H / ? x ; < T , . , ) '  i f,sp[--t:I(U* r v 2 +  I U ' ) , ' ~ X T ~ ] ,  

i.e., when t + co, the gas is transformed into a quiescent state with an 

equilibrium distribution function and a temperature equal to T 2' 

3 .  Numerical Calculations of Spat-ially Uniform Motion - ~~~ 

on- the Basis of a Model Kinetic Equation 

For an approximate description of a gas flow whose distribution function 

is close to the local Maxwell distribution function, a model equation may be 

used instead of the Boltzmann equation [SI .  

For a second example of spatially uniform flow at v = 5 it has the form 

where 
3, 2 2 2 

A = constant; n, T, U, V ,  W are defined through f from the known formulas. 

f, = ti(fiii?nzT)'z ( ~ ' ; I ) I - t t i L ( l ~ -  U )  +(u- V )  + ( w -  It') 1;'2;.-T I; 

The initial distribution function at t = 0 is 

AS before, it can be shown that n = no, W = 0 ,  T + J 2 + V  = To +- m 2  
3% 2 '  3 x  0 
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and when t-)co the gas passes into a quiescent state with an equilibrium 

distribution function. 

Let us seek macroscopic velocities U and V in the form 

U = a(t)casz; ‘4 = a(t)sinz. (27) 

Substituting this macrovelocity distribution into equation (25) and inte- 

grating the equation taking initial condition ( 2 6 )  into account, we obtain 

where T ( t )  is expressed through-the still random function a(t) by 

the expression 

the function a(t) there are two relationships which distribution ( 2 8 )  must 

convert into an identity. 

2 
tl1 u, 2 In order to determine T ( t )  = T o +  - - S O  ( t ) .  3 3  3r. 

+.a += 
u r Jj-f I l f ~ l u d v d w ;  v = 1- JJJ vfd11dvdw. 

n o  -Do n o  -m 

Substituting here the macrovelocity distribution ( 2 7 )  and function ( 2 8 )  and 

integrating we obtain a single cundition imposed on a(t): 

We reduce this equation to a dimensionless form, assuming a(t) = Uoal(tl), 

t=tlb/Uo where L is the characteristic dimension of the nonuniformity in the 

direction of the Oz axis: 
0 



The numerical so lu t ion  of t h i s  equation w a s  obtained by t h e  i t e r a t i o n  meth- 

od on a "St re la"  computer. The computation r e s u l t s  are shown i n  t h e  

f i g u r e .  

Changes i n  absolu te  ve loc i ty  al 
as a func t ion  of t i m e ;  -alculated by t h e  model equation; 
- - -  ca lcu la t ed  by t h e  f r e e  molecular theory ;  - . - . ca l -  
cu la ted  by t h e  Navier-Stokes equation; 1 - p = I, 

'J. = 0 , 1 ;  2 -  p = I ,  a = 1; 3 - p = 1 ,  a =  2; 4 - p = 1, a = 5  

For comparison, t h e  f i g u r e  a l s o  g ives  t h e  so lu t ion  of t h i s  problem 

- .- 
n l  = d"p[-(I + 

obtained by t h e  Navier-Stokes equation. - -  
+ 6?)t1/3g.1 /&p+e;p [-2(1 + 6 F > t i / 3 a ] .  

Curves 1, 2 ,  3 and 4 correspond t o  t h e  following values of t h e  parameters: 

p 1, a = 2 ;  / 3 =  1, a =  5 and a r e  t h e  p l o t s  of t h e  dimensionless 
p =  1, a = 0, l ;  = 1, a = 1; 

ve loc i ty  modulus a ( t  1. The dashed curve represents  t he  dependence a l ( t l )  

under f r e e  molecular f low condi t ions  when B = 1 .  It is  apparent t ha t  curve 1 

is c lose  t o  t h e  so lu t ion  of t h e  f r e e  molecular equation. An increase  i n  

parameter cy with B remaining constant corresponds t 0 a  decrease i n  t h e  

Knudsen number, i.e. t r a n s i t i o n  t o  t h e  condi t ions  of a continuous medium; 

however, a t s m a l l  t l  values 

so lu t ion  and a r e  tangent t o  it a t  t 4. The curves behave t h i s  way because /35 
of t h e  choice of t h e  l o c a l  Maxwellfunction as t h e  i n i t i a l  d i s t r i b u t i o n :  

t h i s  converts t h e  c o l l i s i o n  i n t e g r a l  t o  zero when t l = O .  

t h e  c o l l i s i o n  i n t e g r a l  t o  remain s m a l l  insome region of po in t  t l  = 0 ,  alld 

t h e  gas flow remains c l o s e  t o  t h e  f r e e  molecular flow. For B = 1  and 

1 1  

a l l  curves approach t h e  f r e e  molecular f low 

1 - 
Continuity 

B 



cy = 5 ,  a solution of the Navier-Stokes equation was constructed (dash-dot-dash 
curve), which differs significantly everywhere from the corresponding solution 

of the model equation (curve 4 ) .  This difference cannot be explained on 

the basis of the well-known characteristics of the model equation, since 

in the case being considered thermal conductivity is absent, Prandtl numbers 

are not involved, and the hydrodynamic equation obtained from the model 

equation by the Chapman-Enskog method coincides in the first approximation 

with the Navier-Stokes equation. Apparently, this difference is caused by the 

presence of "the temporary initial layer" [ 7 ]  in the solution of the kinetic 

equation, in which the initial distribution function is converted to a function 

of the Navier-Stokes approximation [61. The figure shows that the shift of the 

Navier-Stokes solution with time, equal in magnitude to the thickness of the 

initial layer, leads to a good agreement of solutions. 

This example verifies the presence of an initial layer in the solution 

of the model equation. 
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SOLUTION OF THE BOLTZMANN KINETIC EQUATION 
FOR THE RELAXATION OF A GAS MIXTURE 

Z. A. Rykov 
T. I. Chukanova 

kt us consider  t h e  temporal behavior of a quiescent  mixture of two gases L36 
of d i f f e r e n t  temperatures a t  t h e  i n i t i a l  t i m e  t = 0, with s p a t i a l l y  uniform 

d i s t r i b u t i o n .  

Physical considerat ions m a k e  it clear t h a t  when t > 0,  hea t  t r a n s f e r  

from one gas t o  t h e  o t h e r  t akes  place and t h e  temperature d i f fe rence  between 

them begins t o  decrease. 

This process of heat ing a cold g a s  by a hot gas w i l l  be inves t iga ted  

on t h e  b a s i s  of t h e  Boltzmann k i n e t i c  equation. The s ta te  of t he  first g a s  

is described by a v e l o c i t y  d i s t r i b u t i o n  func t ion  of p a r t i c l e s ,  f ( t ,  c), and 

t h a t  of t h e  second g a s  by t h e  v e l o c i t y  d i s t r i b u t i o n  func t ion  F ( t ,  c ) ,  where 

c is t h e  v e l o c i t y  vector.  

-b 

+ 
+ 

W e  assume t h a t  t h e  mixture is composed of absolu te ly  hard smooth spheres 

2 with diameter 0 and m a s s  m f o r  t h e  first g a s ,  and diameter 0 and m a s s  m 

f o r  t h e  second gas. W e  assume m 
1 1 2 

1 m2' 

Let t h e  dens i ty  and t h e  temperature of t h e  first g a s  be n and T and 1 10 
of t h e  second g a s  be n2 and T20. 

each gas is taken t o  be Maxwellian, i.e., 

The i n i t i a l  d i s t r i b u t i o n  funct ions f o r  

where k is t h e  Boltzmann constant  and V is t h e  v e l o c i t y  modulus. 

With such a choice of i n i t i a l  d i s t r i b u t i o n  func t ions ,  t h e  s o l u t i o n  of 

t h e  Boltzmann k i n e t i c  equation w i l l  depend only on t h e  v e l o c i t y  modulus V 

and the  t i m e  t. In  t h i s  case, t h e  quintuple  c o l l i s i o n  i n t e g r a l s  i n  t h e  

Boltzmann equation are transformed t o  double i n t e g r a l s ,  as w a s  done i n  [l]. 

L3 7 
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The transformed Boltzmann kinetic equations become 

where 

A -  
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where 

In order  t o  determine t h e  d i s t r i b u t i o n  func t ions  f ( t , V )  and F ( t , V ) ,  

it is necessary t o  solve t h e  Cauchy problem f o r  t h e  system of equations (2) 

with i n i t i a l  condi t ions  (1). 

Below we w i l l  g ive a numerical so lu t ion  f o r  t h i s  problem. 

L e t  us first note  c e r t a i n  p rope r t i e s  of t h e  so lu t ion  t o  be found which 

can be es tab l i shed  p r i o r  t o  solving t h e  problem. 

From the  conservation equations it fol lows t h a t  i n  t h e  r e l axa t ion  pro- 

cess the  d e n s i t i e s  of the  number of p a r t i c l e s ,  n n and t h e  sum of t h e  g a s  

temperatures,  T1 + TZ, w i l l  remain constant .  
1' 2 
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It follows from the  Boltzmann H-theorem that. when t + m, t he  d i s t r i b u t i o n  

func t ions  f and F become [21: 

where Tm=(T +T 
10 20 

I t  is apparent t h a t  when t* 

)/2 is t h e  temperature of t h e  mixture at  equilibrium. 

T,(t) 3 Too and T 2 ( 0  -+ Tm, 

The above indicated p rope r t i e s  were used f o r  cont ro l l ing  t h e  count. 

In  f inding t h e  numerical so lu t ion  of t h e  equations,  it is convenient 

t o  convert t o  dimensionless va r i ab le s  by means of t h e  following equations 

t = -C1t’; v = c2V’; 

where t ’ ,  V I ,  f ’ ,  and F ’  are dimensionless q u a n t i t i e s  and t h e i r  c o e f f i c i e n t s  

a r e  c h a r a c t e r i s t i c  sca l ing  f a c t o r s ;  7 w a s  se lec ted  t o  equal t h e  average 1 
time between successive c o l l i s i o n s  of p a r t i c l e s  of type-one g a s  when t h e  

mixture is a t  equi l ibr ium: 

c p  = (3kT,/m2) is t h e  mean thermal ve loc i ty  of g a s  p a r t i c l e s  of t h e  second 

type when t = m .  

The first time s t e p ,  allowing movement away from the  i n i t i a l  

d i s t r i b u t i o n  func t ions ,  is c a r r i e d  out using t h e  Euler method: 

f’(At’,V‘) = f i ( V ’ >  + Jll(fG > f i ) A t ’ + J 1 2 ( f i >  F,’ ) A t ’ ;  

F’bt’, V‘ = F,’(V’) +J,  , ( F i ,  F,’)At‘+ J 2  l (F i  I fi ) A t ’  
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The double i n t e g r a l  is evaluated by repeated computation of s i n g l e  i n t e g r a l s .  

The l a t t e r  w e r e  evaluated by t h e  trapezium method. - /40 

From t h e  found values of t he  f’ and F’  d i s t r i b u t i o n  func t ions ,  t h e  dimen- 

s i o n l e s s  temperatures T I and TZ’ w e r e  ca lcu la ted  by formulas 1 

These c a l c u l a t i o n s  w e r e  conducted on t h e  BESM-6 e l e c t r o n i c  d i g i t a l  

computer a t  t h e  Computer Center of t h e  Academy of Sciences of t h e  USSR. 

A mixture cons is t ing  of methane and argon w a s  taken f o r  s p e c i f i c  calcu- 

l a t ions .  

The type-one g a s  w a s  methane, t h e  type-two g a s  argon. The i n i t i a l  

argon temperature was 10 ,OOO°K,  while t h a t  of methane w a s  3 0 0 ° K .  

The g a s  d e n s i t i e s  w e r e  

M t1 2 =  1oI8 C L 3 .  

A t  equilibrium t h e  mean t i m e  between t h e  c o l l i s i o n s  of methane p a r t i c l e s  

w a s  found t o  be T &.34x10-~ sec. The s o l i d  curve i n  Figure 1 shows t h e  

uniform increase i n  methane temperature TI r e s u l t i n g  from i ts  heating by 

argon. 

1 

After a period equivalent t o  seven c o l l i s i o n  t i m e s ,  t h e  methane 

temperature d i f f e r s  from t h e  equilibrium value by only 9%, 

i.e. one can say t h a t  i n  t h i s  example t h e  temperature r e l a x a t i o n  t i m e  is 
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of t h e  order  of 7-8 c o l l i s i o n s .  

Figure 2 shows graphs of t h e  f *VI2 funct ion f o r  var ious  t i m e s .  The sub- 

s c r i p t  on t h e  func t ion  des igna tes  the  time t o  which t h e  curve refers. 

Figure 3 shows t h e  changes i n  t h e  F f V f 2  funct ion f o r  argon. The 

so lu t ion  obtained f o r  t h e  problem allows a c e r t a i n  evaluat ion of t h e  accuracy 

of t h e  approximate method f o r  solving t h e  Boltzmann k i n e t i c  equation. 

The problem of t h e  r e l a x a t i o n  of a mixture of gases w a s  solved i n  

i n  which t h e  motion of a [ 3 ,  41 by t h e  s t a t i s t i c a l  Monte Carlo method, - /41 
l a rge  number of molecules is observed simultaneously. The essence of t h a t  

method has been descr ibed i n  d e t a i l  i n  t h e  indicated re ferences .  

0 

a 

0 

n 

4 d. 
..-- 

t' 

Figure 1. Graph represent ing temperature increase 
of methane TI  as a func t ion  of time. 

Our ca l cu la t ions  were made f o r  the  same s p e c i f i c  

gases and with t h e  same i n i t i a l  d i s t r i b u t i o n  func t ions  as i n  [ 3 ,  41. 
Their r e s u l t s  w e r e  reca lcu la ted  t o  our dimensionless va r i ab le s  and p lo t t ed  

f o r  var ious time i n t e r v a l s  as c i r c l e s  and X I S  i n  Figure 1. The X ' S  apply 

t o  da t a  i n  [ 3 1 ,  while t h e  c i r c l e s  represent  t he  d a t a  i n  C41. 

The graph shows t h a t  t h e  r e s u l t s  obtained by the  authors  
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of [3, 41 d i f f e r  from the  p rec i se  so lu t ion  by an average of 30%. 

Comparing t h e  r e s u l t s  i n  [3] and [4] over a range of methane temperatures 

shows poor agreement. In E31 a pe r iod ic ,  nonuniform increase i n  methane tempera- 

t u r e  was discovered. This is absent i n  the so lu t ion  which we obtained. 

Remarks. I n  the  discussion with one of the  authors  of references [ 3 ,  41, 
Yu. G. Malama, i t  w a s  found t h a t  i n  these  ar t ic les  the  d e n s i t i e s  of argon and 

methane gases were erroneously given as 10 cm . The co r rec t  values are 

0.5 x 10 cm . This leads t o  changes i n  the  t i m e  s c a l e  by a f a c t o r  of two. 

For comparison of t h e  da ta  of [41 with our r e s u l t s  with respec t  t o  the  methane 

temperatures and taking i n t o  account the  above-mentioned discrepancy, it is 

necessary t o  reduce the  absc issa  of the c i r c l e s  i n  Figure 1 by a f a c t o r  of two. 

Such a comparison y i e lds  s a t i s f a c t o r y  agreement of r e s u l t s .  

18 -3 
18 -3 

L-3 

L42 

2 
Figure 2 .  Graphs of the  f V  func t ion  for d i f f e r e n t  
t i m e s .  The subsc r ip t s  on the  func t ions  designate  the  
t i m e  t o  which each curve r e fe r s .  
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L43 

Fv" 

Of 

4 1 

2 V 

2 
Figure 3 .  Dependence of t he  FV funct ion  on t h e  magnitude 
of V f o r  argon. The s u b s c r i p t s  on t h e  func t ion  F des igna te  
t h e  t i m e s  t o  which each curve refers ( t  = 0,  t = 2 ,  

1 1 tl  = 4 ,  t l  = a). 
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A METHOD FOR DIRECT NUMERICAL INTEGRATION 
OF THE BOLTZMA" EQUATION 

F. G .  Cheremisin 

1. Pr inc ipa l  D i f f i c u l t i e s  i n  Numerical Solut ion 
~~ _- 

of The Bolt-zmaG-Equation ~- 

A r igorous formulation of problems i n  the  flow of r a r e f i e d  gases is - / 4  5 

provided by t h e  Boltzmann k i n e t i c  equation, which permits descr ip t ion  of 

s i g n i f i c a n t  changes i n  flow proper t ies  a t  d i s tances  on t h e  order of t h e  mean 

free path or during a t i m e  comparable t o  t h e  mean t i m e  between molecular 

c o l l i s i o n s .  

The Boltzmann equation introduces a molecular ve loc i ty  d i s t r i b u t i o n  
-+ -+  

+ 
funct ion f ( s , X , t ) ,  which is  determined i n  t h e  so-cal led "phase space' '  of a 

molecule ( 2 , ~ )  and it is  a l s o  t i m e  dependent. The hydrodynamic character-  

i s t i c s  of flow (dens i ty ,  average v e l o c i t y ,  temperature, momentum 

and energy f luxes  ) are a l l  determined from t h e  found d i s t r i b u t i o n  func t ion  

as t h e  corresponding means over v e l o c i t y  subspace. 

A s  i n  ordinary hydrodynamics, t h e s e  q u a n t i t i e s  s u f f i c i e n t l y  w e l l  

charac te r ize  t h e  flow, and t h e i r  determination is of fundamental 

i n t e r e s t .  

The uniqueness and t h e  d i f f i c u l t y  of t h e  problem, however, l ies i n  

t h e  fact  t h a t  it is no t  poss ib le  t o  construct  a closed system of equations 

f o r  t h e  hydrodynamic q u a n t i t i e s ,  and t h e i r  determination requi res  t h e  

preliminary c a l c u l a t i o n  of t h e  d i s t r i b u t i o n  func t ion ,  i.e., it requi res  

a s i g n i f i c a n t l y  more d e t a i l e d  descr ipt ion.  After such a descr ip t ion  i s  

achieved ( the  d i s t r i b u t i o n  func t ion  is found) ,  tfexcess't information is 

eliminated by ca lcu la t ing  t h e  corresponding mean q u a n t i t i e s .  

Natural ly ,  one at tempts  t o  formulate numerical s o l u t i o n  of t h e  

Boltzmann equation i n  such a manner t h a t  it conta ins  a minimum amount of 

excess information a t  t h e  d i s t r i b u t i o n  funct ion l e v e l .  The desired d i s t r i -  

bution funct ion 3 must s a t i s f y  t h e  following requirements:  / 4  6 
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where f is t h e  p rec i se  va lue  of t h e  

< E  - 'I i '  

3 2  
d i s t r i b u t i o n  func t ion ;  Yi= il, 5 ,  5 5 

are molecular c o l l i s i o n  i n v a r i a n t s ; t h e  parameters 6 6 1 s t i p u l a t e  

t h e  requi red  accuracy i n  ca l cu la t ing  t h e  hydrodynamic q u a n t i t i e s .  
i' i 

I n e q u a l i t i e s  (1) determine how c l o s e ,  on the  average, t h e  computed 

d i s t r i b u t i o n  func t ion  is t o  the  t r u e  value. These conditions can be s a t i s f i e d  

simultaneously i f  t h e  d i s t r i b u t i o n  functions a r e  computed a t  each 

poin t  i n  phys ica l  space (x, t )  with s t a t i s t i c a l  accuracy, i.e., s o  t h a t  

t h e  computed va lues  conta in  t h e  s t a t i s t i c a l  e r r o r  6 randomly d i s t r i b u t e d  

around 6 d 0. 

-b 

0' 

0 

The accura te  c a l c u l a t i o n  of t h e  d i s t r i b u t i o n  func t ion  a t  each point 

i n  phase space r equ i r e s  a tremendous number of opera t ions ,  due t o  the  

necess i ty  of solving f ive - fo ld  quadratures i n  t h e  c o l l i s i o n  in t eg ra l ,  

The suf f ic iency  requirements on t h e  average allow t h e  c a l c u l a t i o n s  t o  be 

c a r r i e d  out with only s t a t i s t i c a l  accuracy and s i g n i f i c a n t l y  reduce t h e  

number of necessary ca l cu la t ions .  

The second p r inc ipa l  d i f f i c u l t y ,  a l s o  assoc ia ted  with t h e  necess i ty  

of d e t a i l e d  desc r ip t ion ,  is t h e  sharp increase  i n  t h e  necessary machine 

memory. In even t h e  simplest  one-dimensional s t eady- s t a t e  g a s  motions % 

t h e  problem a t  t h e  d i s t r i b u t i o n  func t ion  l eve l  becomes a t  l e a s t  

three-dimensional, and t h e  magnitude of t h e  d i s t r i b u t i o n  func t ion  as a r u l e  

changes s i g n i f i c a n t l y  over a l l  t h r e e  var iab les .  

Evaluations show t h a t  i n  order  t o  store d a t a  on t h e  d i s t r i b u t i o n  func t ions  

a t  t h e  necessary number of po in t s  i n  phase space ,  t he  opera t iona l  memory 

of a modern e l ec t ron ic  d i g i t a l  computer is i n s u f f i c i e n t .  

2. Scheme f o r  In t eg rc l  I t e r a t i o n s  

L e t  us cons t ruc t  an algorithm involving successive i t e r a t i o n s  of t h e  

Boltzmann equation which does not r equ i r e  s torage  of each s t e p  of t h e  new 
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d i s t r i b u t i o n  funct ion.  

where 

and 8 

The Boltxmann equation may be wr i t t en  i n  t h e  form - /47 

In  equation ( 2 )  t h e  c o l l i s i o n  in t eg ra l  is i n  two p a r t s ,  t h e  first of 

which, V f ,  descr ibes  t h e  decrease i n  t h e  d i s t r i b u t i o n  funct ion as a r e s u l t  

of c o l l i s i o n s  of an i s o l a t e d  group of molecules wi th  a l l  o t h e r s ,  the  second 

p a r t  of t he  i n t e g r a l ,  on t h e  r i g h t ,  gives  the  increase i n  the  number 

of molecules i n  t h e  se l ec t ed  element of phase volume r e s u l t i n g  from 

molecular c o l l i s i o n s  i n  a l l  t h e  remaining space. S t r i c t l y  speaking, 

such a subdivis ion of t h e  Boltzmann in t eg ra l  is  admissible only when 

molecular i n t e rac t ing  has a f i n i t i e  radius .  The rap id  decrease of t h e  

intermolecular  p o t e n t i a l  f o r  neu t r a l  gases with d is tance  j u s t i f i e s  

l imi t ing  of t he  i n t e r a c t i o n  radius .  During numerical i n t eg ra t ion  

t h e  l i m i t a t i o n  of t h e  region of changes of t h e  impact parameter 

(with subsequent t e s t i n g  of t h e  ins igni f icance  of such l i m i t a t i o n s )  is 

necessary. 

The following i t e r a t i o n  method f o r  t h e  so lu t ion  of equat ion ( 2 )  

appears des i r ab le  : 

where 

etc. 
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The convergence of t h i s  process ,  which w a s  used f o r  proving t h e  theorem 

of ex is tence  of s o l u t i o n s  f o r  t h e  Boltzmann equation, w a s  e s t ab l i shed  only 

f o r  s p a t i a l l y  homogeneous flow and f o r  “ s u f f i c i e n t l y  s m a l l ”  t - to values ,  

where to is t h e  i n i t i a l  moment of t i m e  i n  t h e  general  case. However, one - /48  
would expect convergence t o  take place  a t  any t - t o  va lues ,  a t  least 

i f  t h e  zero approximation has been se l ec t ed  successfu l ly .  

In t eg ra t ing  ( 3 ) ,  w e  ob ta in  

In t u r n  

From t h i s  w e  see  t h a t  t h e  so lu t ion  of equations ( 4 ) - ( 7 )  is wr i t t en  

i n  a form which allows in t roduct ion  of both i n i t i a l  and boundary conditions.  

I f  one cons iders  t h e  problem with i n i t i a l  condi t ion  t = to, then 
+ - 9  - t +  + 

f (  4 ,  xo , t o )  - ‘p ( t i ,  x - 6 ( t -  t, 1) 

For a problem with t h e  assigned func t ion  a t  t h e  boundary, one must assume 
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+ 
where x 

of -5 with t h e  boundary surface.  One can a l s o  have a mixed problem, when 

t h e  d i s t r i b u t i o n  func t ion  is s t i p u l a t e d  on c e r t a i n  sur faces  and a t  c e r t a i n  

spec i f i ed  i n i t i a l  moments of t i m e .  I n  t h i s  case t h e  i n i t i a l  d a t a  can be r e -  / 49  + 
f e r r e d  t o  t = 0, and one can consider f (2 ,x  t ) t o  be a func t ion  s t i p u l a t e d  

on t h e  boundary o r  an i n i t i a l  va lue ,  depending on whether t h e  c h a r a c t e r i s t i c  

o r ig ina t ing  a t  poin t  x i n  t h e  -5 
a t  t > 0 o r  e n t e r s  t h e  region of i n i t i a l  da t a  a t  t = 0. 

is t h e  i n t e r s e c t i o n  of t h e  ray  drawn from point 2 i n  t h e  d i r e c t i o n  
- b S  

- 
0’ 0 

+ 
d i r e c t i o n  i n t e r s e c t s  t h e  boundary sur face  

(n-1) L e t  u s  assume t h a t  t h e  (n-l)m i t e r a t i o n  has been performed and f 
+ +  

is a known function. L e t  u s  seek f (n ) (5 ,x , t )  a t  a designated phase poin t  + 
(2,;) a t  t i m e  t. For t h i s  purpose it is necessary t o  c a l c u l a t e  Jn-l) &x, t 1 

+ -b + + - t  
( n - l ) ( z , x , t )  a t  a number of p o i n t s  (t x ) where x = x - 5( t - t1) .  L e t  

1 and N 

u s  c a l c u l a t e  t hese  i n t e g r a l s  a t  each poin t  (t  x ) by random sampling. For 

t h i s  purpose we s h a l l  t ake  a s e t  of random numbers (%,,e,, e l ) ,  c a l c u l a t e  

( 5 -  , e , ,  6,) f o r  each, c a l c u l a t e  t h e  va lues  

1’ 1 ; 
1’ 1 + 

-t -t 
f o r  each assigned value ?land 5 ! ,  

-b + 1. -1 I I 
(n-1) + -t and then f i n d  t h e  corresponding va lues  of f (5,’X1 , t l  1 ,  

(n-1) -t -t 
(511,xT,T). I n t e g r a l s  (5) and ( 6 )  a r e  t h e  sums 

1 + and f 

of t h e  integrands a t  d i f f e r e n t  po in ts  ( 5  8 ,  e ) .  In tu rn  the  

va lues  of f (n-l) a t  t h e  required po in t s  ( 5  ,x , t  1, ( s 1 , x T , T )  and (5,- I ,xT,T) 

must be ca lcu la ted  i n  t h e  same manner from t h e  f‘1’-2)(z2, x2, t2) values 

11, + .+ + - t +  

-t 
1 1  

e tc .  

Figure 1. The sequen t i a l  approximations scheme. 
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The ca l cu la t ion  scheme is represented i n  Figure 1; t h e  po in t s  a t  

which t h e  successive i t e r a t i o n s  mustbe computed a r e  indicated.  One can 

pre l iminar i ly  sample (from t o p  t o  bottom) a sequence of random numbers - /50  
which cha rac t e r i zes  each apex of t h e  diagram, and then  c a r r y  out successive 

i t e r a t i o n s  (from bottom t o  top ) .  However, s to r ing  a l l  t he  sets of 

random numbers is no less d i f f i c u l t  a problem than s t o r i n g  the  d i s t r i -  

but ion funct ions.  

L e t  us j o in  each th ree  apices  connected i n  Figure 1 by dashed l i n e s  i n t o  a 

s i n g l e  apex A The obtained "graph, known as a "tree" 

(Figure 2 ) ,  is c h a r a c t e r i s t i c  i n  t h a t  each of i ts apexes A is determined 

only by a s i n g l e  preceding 
s torage  of the  whole t r e e  i n  the  memory i n  advance is not necessary,  but only a 

s i n g l e  branch represented i n  Figure 2. 

n-1, An-2 3 -. 
k- 1 

\. This s i t u a t i o n  p lays  an important r o l e ,  s ince  

Figure 2 .  I t e r a t i o n  t r e e  f o r  t he  Boltzmann equation. 

For t h e  assigned value of t h e  root  A , consider  t h e  random numbers 

which def ine  one of t h e  apexes A f o r  t h i s  apex de f ine  one of t h e  n-1; 
apexes A 

are necessary f o r  t h e  ca l cu la t ion  of f ( ' )  at apex A 

t h e  value of t h e  random vec tor  which def ines  A and taking a new s e t  of 

A 

e tc . ,  u n t i l  A is reached; take only as many values  of A as 1 0 n-2' 
Then, changing 1' 

c a l c u l a t e  t h e  values  of f") at t h e  new apex A I .  

1' 
Repeat t h i s  process 

0' 1 
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(1) u n t i l  enough values  of f 

c a l c u l a t e  t h e  second i t e ra t  

c a l c u l a t e  f i n  apex A I 2 '  

It can e a s i l y  be shown 

(2)  

p r a c t i c e  f o r  any number of 

a t  apexes A 1, A l l ,  

on f ( 2 )  a t  one of t h e  apexes A2; then s imi l a r ly  

e tc . ,  u n t i l  An is reached. 

. . . , have been acquired t o  

t h a t  memory space problems do not arise i n  - /51 

t e r a t i o n s  ("generations" of t h e  tree,  Figure 21, 

s ince  t h e  zero i t e r a t i o n  can always be s t i p u l a t e d  i n  ana ly t i ca l  form. 

However, t he  volume of ca l cu la t ions  avalanches with each new i t e r a t i o n .  A 

s i g n i f i c a n t  reduct ion i n  ca l cu la t ions  can be achieved by using s ta t i s t ica l  

cons idera t ions ,  s i m i l a r  t o  those which w e r e  expressed i n  Sect ion 1 of 

t h i s  chapter ,  i n  conducting subsequent i t e r a t i o n s .  

Requirements s i m i l a r  t o  (1) must be imposed f o r  i n t e g r a l s  containing 

f (n- l )  and which e n t e r  i n t o  t h e  d e f i n i t i o n  of f ( n ) .  

note  t h a t  smoothing of f 

a l s o  along t h e  c h a r a c t e r i s t i c .  

It  is important t o  
+ 

occurs not only a t  each poin t  ( x , t ) ,  but (n-1) 

In carrying out n i t e r a t i o n s ,  n-1 l e v e l s  arise, each of which r e s u l t s  

i n  the  smoothing of t h e  previous i t e r a t i o n .  F i n a l l y ,  t he  obtained 

funct ion of f ( n )  i s  in tegra ted  f o r  obtaining the  hydrodynamic quan t i t i e s .  

This computation method may be used f o r  f ind ing  accura te  f ( n )  values 

a t  a s m a l l  number of phase poin ts  (construct ion of d i s t r i b u t i o n  

funct ion p r o f i l e s ,  e t c . ) .  

f (n - l )  over a s u f f i c i e n t l y  la rge  number of' sets of random 

numbers, and a l l  previous i t e r a t i o n s  are performed as  described 

above. The bes t  ca l cu la t ion  conditions a r e  chosen and ca l cu la t ions  are 

checked by changing the number of trials i n  each generation of the  i t e r a t i o n  

t r ee .  

In t h i s  case f ( n )  is ca lcu la ted  through 

3 .  Stochas t ic  Boundary Conditions 

In Sect ion 2 we considered t h e  problem with assigned i n i t i a l  or boundary 

funct ions.  In  ca l cu la t ing  t h e  hydrodynamic flow of r a r e f i e d  g a s  around 

var ious bodies,  t h e  so-called s tochas t i c  boundary condi t ion is f requent ly  

used; t h i s  descr ibes  the  inc ident  and t h e  r e f l ec t ed  flow of molecules 

from a sur face  element: 
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-+ 
where n is t h e  ex terna l  normal t o  t h e  sur face  element. 

nucleus K(2 ,I) cha rac t e r i zes  t h e  p rope r t i e s  of t h e  r e f l e c t i n g  surface and 

may contain such parameters as temperature and avarage ve loc i ty ,  descr ibing 

the  sur face  s t a t e ,  and a l s o  various accommodation c o e f f i c i e n t s ,  which 

cha rac t e r i ze  its s t ruc tu re .  One can take  i n t o  account t he  p a r t i a l  accommodation 

of incident  molecules i f  one assumes t h a t  the  f r a c t i o n  a of the  inc ident  

beam undergoes mirror r e f l e c t i o n ,  while t h e  remainder leaves  t h e  w a l l  wi th  a 

Maxwellian d i s t r i b u t i o n  corresponding t o  some new values  of mean 

temperature and mean ve loc i ty .  In t h i s  case [l]: 

The s c a t t e r i n g  
- t +  - / 5 2  

where 6(y)  is t h e  d e l t a  funct ion.  

Boundary condi t ion ( 8 )  may be included i n  t h e  scheme of Sect ion 2 by 
-+ 

i s o l a t i n g  t h e  cone of in f luence  of t h e  body a t  t h e  poin t  (x, t )  (Figure 3 ) .  

Figure 3 .  Calculat ion scheme f o r  s tochas t i c  boundary condi t ion.  



The conditions a t  i n f i n i t y  may be replaced i n  p r a c t i c a l  ca l cu la t ions  

by assigning boundary condi t ions  f (5  ,xz,t)=f,({ , t) on some l imi t ing  su r face  

C. W e  ob ta in  

+ +  + 

Subs t i t u t ing  i n t o  equation (9)  t h e  value 

+ -  
For s impl i c i ty  we can consider t h a t  q c n  ( t h i s  i s  always v a l i d  f o r  convex 

su r faces ) .  Then f ( n )  (? / ,xs , to)  can be described by formula ( l o ) ,  i n  which 

one should r ep lace  5 + 7 ,  x + xs, t + to. 

+ 
+ + +  + 

W e  s h a l l  ob ta in  

+ +  
Formulas (10) and (12) express t h e  func t ion  f ( n ) ( S  , x , t )  a t  any values of 

+ 
t h e  vec tor  5 through t h e  va lues  of t h e  d i s t r i b u t i o n  func t ion  a t  t h e  outer  

boundary and the  (n-l)m approximation. Rela t ionships ,  analogous t o  ( 9 ) -  

,..., e tc .  (n-1) (11-21 
( 1 2 ) ,  must be wr i t t en  f o r  f 9 f  

+ 
Each s t e p  during add i t iona l  i n t eg ra t ion  f o r  7 i n  (12) increases  t h e  

+ -  
number of c a l c u l a t i o n s  f o r  I + 7 n;mber f o r  ca l cu la t ion  of the  i n t e g r a l  containing the  ke rne l  K ( 5 ,  J) .  

exception is  t h e  case  of pure mir ror  r e f l e c t i o n :  

corresponds t o  one value and t h e r e  is no s i g n i f i c a n t  increase  i n  t h e  

volume of ca l cu la t ions .  

Sa by as many values as t h e  requi red+ 
+ 

An 

here  a s i n g l e  vec tor  + 
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Figure 3 explains  t h e  ca l cu la t ion  scheme f o r  s tochas t i c  boundary 

condi t ions  on t h e  body. It  is obvious t h a t  t h e  cons t ruc t ion  of one t ree  

with a root  at t h e  assigned point  ( { ,x , t )  and {ahl r equ i r e s  addi t iona l  

cons t ruc t ion  of severa l  t r e e s ,  having a common roo t  at  t h e  point  gs({,t). 
This ,  apparent ly ,  is v a l i d  f o r  each apex ( 5  
and a l s o  f o r  t h e  apexes of t h e  trees which o r i g i n a t e  a t  po in t s  x 

+ - +  -+ 

-+ 

+ - +  
x i , t i )  of t h e  i n i t i a l  t ree,  

+ + i' 
if  si" a. 

s' 

A s  i n  t h e  case of assigned boundaries o r  i n i t i a l  func t ions ,  memory 

problems do not  arise when using s t o c h a s t i c  boundary condi t ions.  

4. Choosing t h e  Zero Approximation 

Since an increase i n  the  number of i t e r a t i o n s  leads t o  a s i g n i f i c a n t  in -  

c r ease  i n  t h e  volume of ca l cu la t ions ,  t h e  ap t  choice of the  zero 

approximation is important. 

I f  t h e  flow of g a s  is c l o s e  t o  t h e  hydrodynamic l i m i t  ( K  <l),  n 
t h e  Maxwell d i s t r i b u t i o n  func t ion  may be se l ec t ed  as t h e  zero approximation: 

The parameters n 
+ +  
v o ( x , t )  which en te r  i n t o  equation (13 ) 

must be determined a p r i o r i  from t h e  hydrodynamic equations.  Then i n t e g r a l s  

v(O) and N ( O )  can be expressed as func t ions  of n o, To, vo and 5 .  The 

ca l cu la t ion  of t h e  first i t e r a t i o n  w i l l  r equ i r e  a s i g n i f i c a n t l y  smaller  

number of elementary operations.  Since a l a r g e  proport ion of t h e  calcula-  

t i o n s  a re  made i n  the  f i r s t  i t e r a t i o n ,  t h i s  w i l l  s i g n i f i c a n t l y  

reduce t h e  t o t a l  volume of ca lcu la t ions .  I n  t h e  case of l a r g e  Knudsen 

numbers, t h e  free molecular so lu t ion  can be used as the  zero approximation: 

-+ -+ -_I__ 

e - +  -+ f (C,Z,  t )  = y ( e ,  x - 6 ( t  - to), t, )* 

In  t h e  intermediate  region,  one of t h e  "rough" so lu t ions  of t h e  Boltzmann 

equation can be used ( f o r  example, t h e  Mott-Smith so lu t ion  f o r  shock waves) 

o r  t h e  so lu t ion  of t h e  corresponding problem of t h e  so-called " re laxa t ionf1  

k i n e t i c  equation, i n  which t h e  Boltzmann i n t e g r a l  is  replaced by a s impl i f ied  
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The r e l axa t ion  equation may a l s o  be used i n  order  t o  reduce t h e  volume of 

ca lcu la t ions  f o r  conducting t h e  first i t e r a t i o n  by t h e  above method. 
3 + 3 3  

if we consider  t h e  values  n , (x , t ) ,  T o ( x , t ) ,  v , (x , t )  i n  t h e  zero approximation 

t o  be s t i p u l a t e d  w e  ob ta in  

Then, 

+ +  (1 )  + -s 

- /55 

3 3 
W e  can then proceed with t h e  ca l cu la t ion  of f2(cn-2,Xn-2,tn-2)l  etc., now 

according t o  t h e  prec ise  Boltzmann equation. 

5. Solut ion of t he  - Problem 
of Homogeneous Gas Relaxation 

~- 

As an example of app l i ca t ion  of the  above cons idera t ions ,  w e  s h a l l  c i t e  a 
so lu t ion  of the problem of the  homogeneous re laxa t ion  of gas cons is t ing  of s o l i d  

e l a s t i c  spheres (Cauchy problem f o r  t h e  Boltzmann equation).  

The Boltzmann equation is wr i t t en  i n  the  form [2] 
a 

+ +  
where 5 ,  7 ,  5 ,  s,, y,, Cl ,  .. . a r e  components or t he  vectors  5 ,  S I ,  .. .; 
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When t = 0 t h e  i n i t i a l  value is s t i p u l a t e d  f o r  equation (14):  

f G , O )  = (Po(;!' (17) 

Le t  us introduce t h e  c h a r a c t e r i s t i c  parameters: dens i ty  "0, temperature 

d is tance  xo = l/noncr2, ve loc i ty  vo =\/-, t i m e  7 = xo/vo, and transform TO? 
i n  equations (141-117) to t h e  dimensionless v a r i a b l e s  and t h e  dimensionless 

func t ion  f *  = f/novo ( h e r e a f t e r ,  w i l l  be omitted). Le t  

u s  cons ider  two d i f f e r e n t  va lues  of t h e  i n i t i a l  func t ion :  

-3 

and 

Condition (18) des igna tes  t h e  nonequilibrium i n i t i a l  s ta te  of t h e  

g a s ,  

degrees of freedom of t h e  molecules. With t i m e ,  smoothing of t h e  temperatures 

must OCCUT, T1 + 1 and T2 + 1, and the  d i s t r i b u t i o n  func t ion  must approach the  

Maxwell equilibrium value. 

i n  which t h e  energy is  nonuniformly d i s t r i b u t e d  over t h e  successive 

Condition (19) r ep resen t s  t h e  so-called "pseudojump"- problem; 

attempts t o  so lve  it are given i n  re ference  [ 3 ] ,  f o r  example. This i n i t i a l  

condition is convenient f o r  t h e  study of t h e  evolution of t h e  d i s t r i b u t i o n  

func t ion ,  s ince  a t  t = O ,  it d i f f e r s  s i g n i f i c a n t l y  from t h e  Maxwell d i s t r i b u -  

t i o n  function. Condition (191, l i k e  (181, corresponds t o  t h e  Maxwell 
equilibrium d i s t r i b u t i o n  func t ion ,  with Tm = 1 and nm = no = 1. 
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The devia t ion  from equilibrium may be charac te r ized  by t h e  quant i ty  

2' Tl-l=ATl or T - 1 d T  
2 

The r e s u l t s  of t h r e e  i t e r a t i o n s  f o r  t h e  i n i t i a l  value of (18) are 

shown i n  Figures 4 ,  5 and Table 1. 

Curves 1, 2 and 3 i n  Figure 4 represent  t h e  r e s u l t s  of one, two and 

t h r e e  i t e r a t i o n s ,  r e spec t ive ly ,  from t h e  tlzerofl approximation 

-b 

f o  = c p 0 ( C ) >  t - 0 ;  

The dashed curve gives  t h e  so lu t ion  of t h e  corresponding r e l axa t ion  equation 

where nT/b. r 

The dependence of F(T) for t h e  considered model of s o l i d  e l a s t i c  

spheres is given i n  re ference  C41, f o r  example. 

In order  t o  determine how c lose  t h e  r e s u l t s  of t h r e e  i t e r a t i o n s  a r e  t o  the  

f i n a l  so lu t ion  of the  problem, two i t e r a t i o n s  of the  Boltzmann equation w e r e  used 

i n  solving t h e  r e l axa t ion  equation (201 ,  used here  as a "zero" approximation, 

The r e s u l t s  of t he  comparison a r e  given i n  Figure 5. 

Curve 4 is obtained after two i t e r a t i o n s  for solving the r e l axa t ion  

equation. A s m a l l  divergence of t h e  curves is  observed when t / T  is  

c lose  t o  one, when the AT1 value i t s e l f  is small and the r e l axa t ion  

has bas i ca l ly  terminated. This d i f fe rence  does not exceed 3% 

of t h e  equilibrium temperature value. 

Let us note  t h a t  the  c h a r a c t e r i s t i c  time T which we use 

here  is not equal t o  t h e  average t i m e  between c o l l i s i o n s  To,  introduced i n  

re ference  C41: 

Table 1, which gives  the  dens i ty  and temperature values ,  ca l cu la t ed  

by three i t e r a t i o n s  (n ,T) ,  and a l s o  by two i t e r a t i o n s  i n  solving t h e  
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r e l axa t ion  equation ( n f , T f ) ,  is used i n  checking the  ca lcu la t ions .  

problem considered, n= l  and T = l  f o r  a l l  values  of t20, i n  view of t h e  

conservation l a w s .  

exceed 0.5% f o r  dens i ty  and 1% for temperature. 

In  the  

According t o  Table 1, t h e  s tandard devia t ion  does not  

t i  
0,IO 
0,25 
0,40 
0,55 
0,70 
0,85 
1 ,oo 
1,15 
1,30 
1,45 

__ 
.- .. 

n 
- 0,997- 

0,998 
1,006 
1,007 
1,017 
1,000 
1,000 

1,010 
1,003 

0,998 

Table 1 

n '  

0,997 

1,016 

1,014 
1,015 
1,013 
1,007 
1,009 

o,am 

0,992 

1,002 

- . ~ 

T 
0,959 
0,988 
1,002 
0,995 
1,008 
1,005 
0,936 
0,998 
0,998 
0,991 

Commas represent  decimal points .  

-~ - 
T' 

0,959 
0,986 
0,992 
1,008 

1,008 
1,005 
1,007 
1,001 
1,003 

0,909 

Figures  6 and 7 ,  and Table 2,  show corresponding r e s u l t s  f o r  t h e  i n i t i a l  

value of (19).  

ATnl 

Figure 4 .  Solut ion of homogeneous r e l axa t ion  problem ( i n i t i a l  
condi t ion (18) ) : 1--f irst i t e r a t i o n ;  2--second i t e r a t i o n ;  3--third 
i t e r a t i o n ;  - - - - so lu t ion  of t h e  r e l axa t ion  equation. 
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Figure  5: Comparison of i terat ions  ( i n i t i a l  condition ( 1 8 ) )  : 
3--third i t era t ion;  &--second i t era t ion  of the solution of the 
relaxation equation. 

Figure 6: Solution of homogeneous relaxation problem ( i n i t i a l  condition 
m l - - f i r s t  i t era t ion;  2--second i terat ion;  3--third i terat ion;  
- - - -  solution of re1 axat ion equation. 
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(I 0.5 to 54 

Figure 7 .  Comparison of i t e r a t i o n s  ( i n i t i a l  condi t ion  ( 1 9 ) ) :  
3--third i t e r a t i o n ;  b--second i t e r a t i o n  of t h e  so lu t ion  of t h e  
r e l axa t ion  equation. 

In  car ry ing  out t h e  c a l c u l a t i o n s ,  t h e  t i m e  s t e p s  were taken equal t o  - /a 
0.057. 
from 250 approximate d i s t r i b u t i o n  func t ion  values. 

f ( 3 ) ( 5 , t )  when t < T O ,  t e n  combinations w e r e  taken a t  each poin t  t %; 

t h e s e  combinations determine t h e  values of t h e  random vec to r s  ( e  , { , S l t ) ,  
which are t h e  arguments of f ( 2 )  ( 5 , t l ) ,  (N1=lO) .  

The hydrodynamic q u a n t i t i e s  w e r e  ca l cu la t ed  by t h e  trapezium method 

Iri ca lcu la t ing  
-# 

1 3 3  

1 3 

3 3 
Corresponding f ( 2 )  ( 5  , ti) values were ca l cu la t ed  through f ( c ,  t,) + 

from f i v e  combinations a t  each 

is  expressed a n a l y t i c a l l y ,  using f 

The func t ion  f ' ')(tl,t2) 

I_. 

t / T  

0 , l O  
0,%5 
0,40 

0,70 
0,ss 
1,OO 

1,90 
1,45 

- 

0,55 

1,15 

. . 

H 
0,098 
1,028 
1,013 
1,@05 
1,006 
1 $CO% 
1 , 006 
1,010 
1,005 
1,003 

. . ._ .  

Table 2 
... _ _  

n 
1,000 
1,020 
0,085 
0,9E6 
1,013 
1,025 
1,014 
1, 01 9 
1,007 
1,006 

_ _  - .. T 
0,996 
1,049 
1,02 1 
1,003 
1,015 
1 ,GO4 
1,009 
1,004 
1 ,oo 1 
0,888 

_ _  
.. . 

T '  
0,998 
1,034 
0,990 
1,007 
1,020 
i ,027 
1,018 
1,019 
1,002 
1,005 

Commas represent  decimal points.  



When t > To, the number of trials was taken to be N - 5 and N2 = 3. 
The complete calculation for three iterations required approximately five 

hours on a BESM-6 computer. 

1 -  

In calculating AT and AT in the second iteration approximation (curve 1 
2 in Figures 4 and 6), the f (2$value was calculated using 
thirty trials at each tl 2 t Point. 
twenty minutes. 

Complete computation took approximately 

Figure 8 represents evolution of the distribution function for the 
pseudojump problem (profile of distribution function f ( 3 )  (2, 0, t) 1 .  
The dashed curve represents the distribution function values. 

Figure 9, as a comparison, shows the distribution function 
profiles in the third iteration approximation f"), in the 

first approximation f"), and the solution of the relaxation equation 

for t = 0.25 7 .  Figure 9 explains the positions of the curves in Figure 6. 

Similar results from distribution function calculations are shown 

fr 8 

in Table 3 .  

obtained from the solution of the relaxation equation after two iterations, 
shows that the iteration approaches the solution of the Boltzmann equation 

The comparison of the f") and f,(2) distribution functions 

L64 

with great accuracy. 

/14,0.0. u 
406 

go2 

.-- 
I- 

Figure 8. Evolution of the distribution function in pseudojump problem. 
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Figure 9.  
at the time t 
of relaxation equation; ,f3 - third iteration. 

Comparison of distribution function profiles 
0.25 7 :  f(l)- first iteration; fr - SOlUtiOn 

4 I f ( 3 )  , 
0 0,0558 
0,2 0,0565 
0,4 0,0577 
0,6 0,0567 
0,8 0,0579 
1,0 0,0536 
1,2 0,0502 
1,4 0,0440 
1'6 0,0362 
1,8 0,0276 
2,O 0,0200 
2,2 0,013.9 
2,4 0,0096 
2,6 0,0063 
2,8 0,0035 
3,O 0,0018 
3,2 0,0011 
3,4 0,0005 
3,8 0,0002 
3,8 0,0001 

t = 0,25 

f;2) 
0,0541 
0,0578 
0,0573 
0,0586 
0,0569 
0,0477 
0,0497 
0,0436 
0,0353 
0,0281 
0,0237 
0,0144 
0,0095 
0,0060 
0,0035 
0,0018 
0,0009 
0,0005 
0,0002 
0,0001 

f ( 3 )  

0,0693 
0,0626 
0,0530 
0,0534 
0,0465 
0,0388 
0,0310 
O,C240 
0,O: 78 
0,0127 
0,0086 
0,0057 
0,0036 

0,0013 
0,0007 
0,0004 
0,0092 
0,0001 
0,00005 

o,oaa 

Table 3 

rl" 
0,0834 
O,GG23 
0,0588 
0,0323 
0,04&5 
0,0388 
6,0313 
0,0241 
0,0178 
0,0127 
0,0087 
0 ,QOS7 
0,0338 

0,0013 
0,001)7 
O,OOC4 
0,0002 
0,0001 
0,00005 

o,ooz 

t -0,s 1 t =  1 

0,0578 
0,0583 
0,0566 
0,0566 

0,0497 
0,0431 
0,0386 
0,0292 
0,0231 
0,0160. 
0,0108 
0,0074 
0,0044 
0,0022 
0,0014 
0,0007 
0,0003 
0,0002 
0,0001 

0,0540 

f '3)  

0,0592 
0,057E 
0,058C 
0,0552 
0,0535 
0,048E 
0,045 1 
0,0366 
0,0292 
0,0220 
0,0173 
0,OI 10 
0,0072 
3,0042 
0 ,Q024 
3,0014 
0,0007 
3,0003 
0,0002 
0,0001 

0,0538 
0 ,DEOl  
0,0574 
0,0561 

O3O4C2 
0,0370 
0,0299 
0,0225 
0,0169 
0,0117 
0,0077 
0,0048 
0,0027 
0 ,OO 1 6 
0,OQOQ 
0,0005 
0,0002 
0,0001 
0,0000: 

o , o a ~  

f,' 2, 
O,Ci612 
0,0695 
O,CB77 
0,0563 
0,0508 
0,0455 
0 ,OS 79 
0,0289 
0,0232 
0,0162 
0,OI 15 
0,0078 
0,0048 
0,0029 
0,001 8 

0,0005 
0,000 9 

0,0002 
0,0001 
0,0000: 

1 = 1,5 
f (3) 

0,0622 
0,061 1 
o,a597 
0,0641 
0,0483 
O,G409 
0,0331 
0 $2 53 
0,O 196 
0,0139 
0,0096 
0,0052 
0,0039 
0,0024 
0,0013 
o,oc;os 
0,0004 
0,0002 
0,0001 
0,0000~ 

f j"' 
0,0611 

0,0589 

0,0485 
0,0409 
0,0336 
0,0276 
0,0195 
0,0146 
0,0100 
0,0064 
0,0040 
0,0024 
0,0014 
0,0008 
0,0004 
0,0002 
0,000 1 
0,00005 

0,081 1 

0,0540 

t = 3  

Commas represent decimal points. 



a; 

5,481 
4,756 
1,251 
3,873 

3,385 
3,280 
3,203 
3,134 
3,076 

3,683 

5;' I P,$ a; I F;' I 6 4  

5,681 2,669 -2,572 2,461 1,073 
5,024 2,CO9 2,878 2,784 1,061 
4,521 3,105 3,:!05 3,040 1,067 
4,137 3,275 3,1:57 3,231 1,027 

3,620 3,701 3,675 3,488 1,009 
3,450 3,734 3,726 3,572 0,994 
3,320 3,780 3,791 3,637 0,893 
3,230 3,811 3,788 3,681 0,904 
3,145 3,814 3,329 3,734 0,977 

3,844 3,592 3,517 3,377 1,017 

_ -  
f!T 

j;z 
~ , 2 5  
0,:o 

0,i'o 
Q,55 

0,85 
1,OO 
1,15 
1,20 
1;15 

a,$ 

4,7EO 
5,484 

4,225 

3,839 
3,855 

3,336 
3,193 
3,073 
3,019 
2,978 

6.; 
1,075 
1,054 
1,051 
L,034 
1,021 
1,025 
1,013, 
1,007 
1,897 
1,993 

Table 5 - 

I 

67 
1 ,Gl 
1,044 
1,026 
1,013 
1,003 
0,996 
0,989 
0,985 
0,881 
0,979 

y6 

104,3 
102,8 
102,3 
90,58 
98,72 
98,43 
97,37 
97,ll 
96,57 
SB,21 

Y; 
14,92 
14,73 
14,87 
14,92 
14,76 
14,83 
14,78 
1-1,81 
l4,70 
14,70 

. -_ 

y6' 
104,4 
101,7 
10 1,9 
101,o 
9.3 "SO 
99,33 

S8,97 
37,83 

W,Ql 

97,68 

Yy 
l e 8 7  
14,78 
14,70 
14,05 
14,61 
14,57 
14,55 
14,53 
14,62 
14,51 

- .  

- .. 

0,lO 
OJ5 

0,55 
0,70 
0,85 
1.00 
1,15 
1,30 
1,45 

0,40 

- 

Y, .-. 
14,91 
14,82 
14,95 
14,71 
14,79 
14,77 
14,63 
1.4,62 
14,57 
14,51 

Y; I Y, - - - - - - - - 
104,5 914,9 
1Q2,5 593,4 
100,9 871,2 
93,74 G5,3 
,0B5e3 813,4 
98,13 807,6 
97,80 766,7 
97,19 793,l 
96,89 787,3 
98,65 784,O 

8;' 
2,077 
2,496 
2,816 
3,060 
3,246 
3,388 
3,496 
3,579 
3,642 
3,690 

Y;- 
915,s 
879,l 
867,8 
8 1 8 , O  
=6,3 
821,3 
816,6 
813,9 
801,9 
798,8 
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1,076 
i,097 
1,072 
1 10 
1,032 
1,015 
1,013 
0,996 

0,985 
0,990 

' 

' 

-- -__ 
Y;' 
__ 

92.2 , 6 
889,0 
863,3 
843,7 
@8,7 
81 7,3 
808,6 
801 ,O 
796,9 
793,O 

6; 
1,074 
1,097 
1,034 
1,043 

1,047 
1,032 

1,048 

1,020 
1,000 
0,995 

5,569 5,625 2,169 
4,962 4,977 2,890 
4,314 4,483 3,063 
4,024 4,106 3,227 
3,708 3,819 3,548 
3,502 3,599 3,605 
3,418 3,432 3,695 
3,245 3,304 3,784 
3,153 3,206 3,796 
3,078 3,132 3,825 

6 ;' 
1,072 
1,048 
1,030 
1,016 
1,005 
0,997 

0,988 
0,982 
0,979 

0,990 

2,6&g 
2,730 
2,908 
3,257 
3,513 
3,641 
3,710 
3,807 
3,740 
3,810 

Commas represent decimal points. 

0 , I O  

0140 
0,25 

0,55 
0,70 
0,85 
1,OO 
1,15 
1,30 
1,45 
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5,499 
4,940 

3,957 
3,648 
3,383 
3,283 
3,129 
3,061 
3,005 

4,328 



14,13 
14,S.l 
14 ,%O 
14,71 
14,83 
14,97 
14,07 
14,81 
14,83 
1 qlG8 

Yi' - 
14,07 
14,16 

14,2Y 
14,33 
14,36 

14,~!0 
14,42 
14,43 

1.1123 

i4,38 

YG Yl Y i '  
89,48 89,3'i 89,lO 
96,31 94,21 80,75 

95,22 9633 92,84 
97,68 98,18 9333 
06,82 98,45 94,06 

97,11 98,68 94,77 
96,53 96,72 05,OO 
96,55 96,84 95,18 

95,29 92,23 01,O3 

aalm W J O  94,4t3 

-. - 

y8 

750,4 
765,2 
764,8 
785,3 
787,O 
782,O 
788,Q 
783,8 
784,7 

G93,8 

Commas represent  decimal points .  

ys' 
731,5 
732,2 
777,2 
792,5 
794,s 
805,2 
799,4 
755,6 
786,3 

6923 

-+ 
In  ca l cu la t ing  t h e  f( ' )  ( 5 , t )  p r o f i l e ,  250 combinations determined t h e  

+ 
-+ 

argument f ( 2 ) ( 5 , t  ) ,  t St; t en  combinations w e r e  used t o  determine t h e  

argument f ( l )  ( 5 ,  t,) , t2stl. 
1 1 

Tables 4 and 5 ( i n i t i a l  condi t ion (18)) and 6 and 7 ( i n i t i a l  condi t ion 

( 1 9 ) )  show t h e  values  of a number of higher moments of t h e  d i s t r i b u t i o n  

func t ion:  
= <t4>; (3.1 = 1<p4>; 6 4  = B<&3; 1 

y4  = < ( 4 2  + p2)2>;  yG = < ( 4 2  f p 2 ) 3 > ;  yg = <  ( 4 2  f p 2 ) 4 > .  

2 

The prime 

des igna tes  moments ca lcu la ted  from t h e  r e l axa t ion  k i n e t i c  equation. 

des igna tes  t h e  moment ca lcu la ted  from f ( 2 ) ,  and t h e  double prime r 

\ 

Y; 
. .- 
692,T 
71 2,8 
728,4 
740,3 

756,3 
76 1,6 
765,8 
768,7 
771,l 

749,4 
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THE STRUCTURE OF SHOCK WAVES I N  A GAS 
CONSISTING OF IDEALLY ELASTIC, R I G I D  SPHERICAL MOLECULES 

F. G. Cheremisin 

1. Pr inc ipa l  Approaches t o  t h e  Theore t ica l  Study 
k y e r  -~ 

._____ _I_-.- -- -~ 

Analysis of shock wave s t r u c t u r e  is one of t h e  c l a s s i c a l  /65 
problems of k i n e t i c  theory ;  a s a t i s f a c t o r y  so lu t ion  has not ye t  been obtained. 

Works dea l ing  with t h i s  problem may be subdivided i n t o  t h r e e  groups. 

The first group conta ins  those  works i n  which a s u f f i c i e n t l y  rough 

and, i n  essence,  l i t t l e  j u s t i f i e d  approximation of t h e  d i s t r i b u t i o n  func t ion  

and Boltzmann equation a r e  replaced by a system of moment equations [l-31, 
o r  Navier-Stokes equations a r e  solved [4-51. An important con t r ibu t ion  t o  

evaluation of such attempts w a s  made i n  C6, 71 i n  which it w a s  

shown t h a t  t he re  i s  no convergence i n  t h e  Grad and Barnett  expansion 

with ~ 1 . 6 5  and M>2.1 respec t ive ly .  When t h e  Mach numbers are not very 

c l o s e  t o  1, w e  know t h a t  t h e  condi t ions  f o r  t h e  a p p l i c a b i l i t y  of t h e  Navier- 

Stokes equation ( s m a l l  changes of t h e  hydrodynamic q u a n t i t i e s  over t h e  

mean f r e e  path of t h e  molecule) are not f u l f i l l e d ;  a t  b e s t ,  one could 

expect q u a l i t a t i v e l y  r e l i a b l e  desc r ip t ion  of t h e  t r a n s i t i o n  layer .  

The second group of works inc ludes  t h e  so lu t ion  of "model" k i n e t i c  

equations,  t h e  physical s ign i f i cance  of which is c l o s e  t o  t h a t  of t h e  

Boltzmann equation [81. For t h i s  equation it is  poss ib l e  t o  obta in  an 

exact numerical s o l u t i o n ,  which, one would expect,  is q u a l i t a t i v e l y  and 

t o  a c e r t a i n  ex ten t  q u a n t i t a t i v e l y  c l o s e  t o  t h e  so lu t ion  of t h e  Boltzmann 

equation. 

The t h i r d  group includes works i n  which, i n s t ead  of t h e  so lu t ion  of 

t h e  k i n e t i c  equation, some s t a t i s t i c a l  process which provides a r e l a t i v e l y  

co r rec t  model of t h e  inves t iga ted  phenomenon is used C9-111. In  t h i s  ca se ,  

as i n  t h e  case  of t h e  Boltzmann equation, t h e  so lu t ion  is c a r r i e d  out a t  

t h e  d i s t r i b u t i o n  func t ion  l e v e l ,  and consequently involves a l l  of t h e  d i f f i -  

c u l t i e s  assoc ia ted  with t h e  necess i ty  of remembering func t ions  with a - /66 
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large number of va r i ab le s .  The volume of c a l c u l a t i o n s  is s i g n i f i c a n t l y  

decreased by abandoning t h e  Boltzmann c o l l i s i o n  i n t e g r a l  f o r  a s t a t i s t i c a l  

model of ind iv idua l  molecular c o l l i s i o n s .  However, abandoning t h e  k i n e t i c  

equation has some drawbacks, i n  t h a t  t h e  constructed random process does 

not adequately represent  t h e  t r u e  physical phenomenon. Perhaps these  are 

t h e  causes f o r  t h e  n o n s t a t i s t i c a l  f l u c t u a t i o n s  on t h e  p r o f i l e  of hydrodynamic 

q u a n t i t i e s  i n  t h e  above works. Lack of memory space i n  e l e c t r o n i c  

d i g i t a l  computers f o r c e s  e i t h e r  subdivision of t h e  phase space i n t o  q u i t e  

l a r g e  c e l l s  o r  l i m i t a t i o n  t o  a r e l a t i v e l y  s m a l l  number of test  p a r t i c l e s ,  

which leads  t o  s i g n i f i c a n t  s t a t i s t i c a l  no ise ,  which m a k e s  i s o l a t i o n  of t h e  

so lu t ion  of t h e  problem d i f f i c u l t .  

In re ferences  c12, 131, t h e  shock wave s t r u c t u r e  w a s  inves t iga ted  

on t h e  b a s i s  of one i t e r a t i o n  of t h e  Boltzmann equation, based on t h e  g a s  

dynamic discontinuous Rankine-Hugonio so lu t ion .  The nonmonotonic behavior 

of t h e  dens i ty ,  temperature and v e l o c i t y  curves is of some i n t e r e s t ,  but 

a t  t h e  same time it ind ica t e s  t h e  necess i ty  f o r  f u r t h e r  approximations. 

2. The Presenta t ion  of t h e  Problem; - - 
of t h e  Molecular Model - .~ 

Rigorous treatment of t h e  problem of t h e  s t r u c t u r e  of shock waves 

n e c e s s i t a t e s  solving t h e  k i n e t i c  Boltzmann equation: 

5 df = J [ f l  f3.X (1) 

where 

T1, ul, n2, TZ, u2 a r e  assoc ia ted  with t h e  Rankine-Hugonio 
1’ 

The parameters n 

conditions.  

The so lu t ion  found f o r  f ( 2 , x )  must subsequently be used f o r  c a l c u l a t i o n  
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of hydrodynamic q u a n t i t i e s  (dens i ty ,  temperature, v e l o c i t y ,  momentum and - /67 
energy t r a n s p o r t ) ,  t h e  behavior of which i n s i d e  a jump is of fundamental 

physical  i n t e r e s t .  

Equation (1) with boundary condi t ions  (2) s h a l l  be solved using 

an i t e r a t i o n  % r e e , "  as presented i n  t h e  previous work of t h e  author 

( t h i s  co l l ec t ion ) .  

i t e r a t i o n s  of t h e  Boltzmann equation using a BESM-6 computer. 

Using t h i s  method, it w a s  p o s s i b l e  t o  c a r r y  out t h r e e  

Idea l ly  e l a s t i c  spheres of constant diameter cr and with no i n t e r n a l  

degrees of freedom w e r e  taken as a molecular model of gas .  The c o l l i s i o n  

i n t e g r a l ,  given i n  expanded form i n  t h e  above-mentioned work, can be t r ans -  

formed t o  t h e  following form 

J [ f I  - - v r f l I f + N [ f ' f ; l ,  

where 

The zero i t e r a t i o n  i s  a so lu t ion  of t h e  model k i n e t i c  equation, which is  
+ 

obtained from (1) and ( 3 )  by s u b s t i t u t i n g  vr(n,T,u) f o r  v[f 1 and 

v f (%;n ,T,u)  f o r  N [ f t f l ' l .  
1 + + 

r O  

In t h e  r i g i d  e l a s t i c  sphere model t h e  quan t i ty  Vr is equal t o  

The p u r i t y  of c o l l i s i o n s  is s e l e c t e d  i n  such a manner t h a t  wi th in  t h e  l i m i t s  

of t h e  continuous medium t h e  co r rec t  va lue  of t h e  v i s c o s i t y  c o e f f i c i e n t  

is  given, but a value of t he  thermal conduct iv i ty  c o e f f i c i e n t  

d i f f e r e n t  from t h e  t r u e  c o e f f i c i e n t  by 50% ( s ince  Pr 1, 

and not 2 / 3 ) .  

3. Numerical Calculation Method 

The c a l c u l a t i o n s  were conducted f o r  Mach number M=2. The boundary con- 

d i t i o n  a t  -= w a s  t r a n s f e r r e d  t o  a d i s t ance  equal t o  -4. lh  from t h e  i n i t i a l  
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gas-dynamic d i scon t inu i ty ,  while t h e  condi t ion a t  + - w a s  t r ans fe r r ed  t o  

a d i s t ance  of +2h, where h is t h e  mean free path i n  t h e  oncoming stream: 
2 A I i / J Z n u  n l s  

Calculat ion tests revealed t h a t  f u r t h e r  removal of t h e  boundaries 

does not have any e f f e c t  on t h e  r e s u l t s .  The in t eg ra t ion  region along t h e  

x-axis w a s  subdivided i n t o  431 equal segments 6x, which determined 

t h e  minimum magnitude of t h e  s t e p  along t h e  space coordinate.  

By in t eg ra t ing  equations (1) and (2 )  when 5% and when SCO, w e  obta in  

(a  = -4,l A; b - 2x). 

The i n t e g r a l s  of t h e  formula f o r  model k i n e t i c  equations can obviously 

be obtained from ( 4 )  and (5).  

One c h a r a c t e r i s t i c  of expressions ( 4 )  and (5) is  the  f a c t o r  1/5, 
which occurs during i n t e g r a t i o n  over x. If one assumes t h a t  t h e  quant i ty  

v ( 2 , x )  is i n s i g n i f i c a n t l y  dependent on 5 ,  then t h e  "at tenuat ion" of t h e  

exponents which en te r  i n t o  ( 4 )  and (5) is proport ional  

t o  t h e  quant i ty  1/5. 
i n  which such a t t enua t ion  occurs must contain a s u f f i c i e n t  number of d i v i s i o n  

points .  As a r e s u l t ,  t h e  in t eg ra t ion  s t e p s  along t h e  x-axis a r e  se lec ted  

t o  be dependent on 5 .  In in t eg ra t ing  the  model equation it is assumed 

t h a t  

In order  t o  achieve t h e  necessary accuracy, t h e  i n t e g r a l  
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The quant i ty  vr is taken a t  t h a t  point  a t  which t h e  va lue  of t h e  d i s t r i b u t i o n  

func t ion  is ca lcu la ted .  The f a c t o r  k determines t h e  number of exponent 

d iv i s ion  po in t s  which are included i n  t h e  a t t enua t ion  i n t e g r a l ,  and a i d s  

i n  the  bes t  choice of ca l cu la t ion  conditions.  

In t h e  in t eg ra t ion  of t h e  Boltzmann equat ion,  t he  quan t i ty  v i n  formula r 
(6) is replaced by v t h e  c o l l i s i o n  frequency, which is ca l cu la t ed  from /69 

0' 
t h e  l o c a l  M a x w e l l  d i s t r i b u t i o n  func t ion  [I41 

where 

The moments of t h e  d i s t r i b u t i o n  func t ion  were ca lcu la ted  as func t ions  

of va r i ab le s  5 ,  p=jT2+c2 '  by a r egu la r  method. 

i n t e r v a l  -3.5 t o  5 thermal v e l o c i t i e s  and values of 0 were taken from 

zero t o  4.3 thermal v e l o c i t i e s .  In solving t h e  model equation and performing 

t h e  first i t e r a t i o n  of t h e  Boltzmann equation f o r  t h e  ca l cu la t ion  of moments 

a t  each point  x ,  approximately 2500 values  of t h e  d i s t r i b u t i o n  func t ion  

were taken. The moments i n  the  second and t h i r d  approximations w e r e  

ca lcu la ted  by taking i n t o  account theoonvergence of t h e  i t e r a t i o n ,  while 

t h e  values  of t h e  d i s t r i b u t i o n  func t ion  i n  t h e  previous i t e r a t i o n  were used 

f o r  increasing t h e  accuracy of ca l cu la t ions .  The d i f f e rences  i n  moments 

were ca lcu la ted :  

Values of 5 were taken i n  the 

In t h e  second approximation, i n  order  t o  achieve ca l cu la t ion  accuracy on 

t h e  order  of one percent ,  1000 values  of t h e  d i s t r i b u t i o n  func t ion  a t  each 

point  x were s u f f i c i e n t .  In  t h e  t h i r d  i t e r a t i o n  ca l cu la t ions ,  250 values  

of f( ') ensured an accuracy of approximately 3%. 
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4 .  Solution of t h e  Kinetic Relaxation Equation - - - . . . - _ _  - -  

Calculation of t h e  shock wave s t r u c t u r e  on the  bas i s  

r e l axa t ion  (model) k i n e t i c  equations may be considered an independent 

problem, t h e  so lu t ion  of which w a s  obtained i n  t h e  above-cited works f o r  

Suther land ' s  model of molecules. On t h e  o the r  hand, t h e  problem of t h e  

so lu t ion  of t h e  r e l a x a t i o n  equation may be viewed a s  a s impl i f ied  v a r i a t i o n  

of t h e  program f o r  t h e  s o l u t i o n  o f  t h e  Boltzmann equation, i n  which t h e  

r e t u r n  t o  t h e  subprograms for t h e  c o l l i s i o n  i n t e g r a l  i s  replaced by t h e  

c a l c u l a t i o n o f  t h e  quan t i ty  v and N =V f . r r r o  
In solving t h e  r e l axa t ion  equation w e  a l s o  use t h e  in t eg ra t ed  i t e r a t i o n  

method, bu t ,  i n  c o n t r a s t  t o  t h e  method used i n  [81, we d id  not use i n t e g r a l  

equations f o r  dens i ty ,  temperature and t h e  average v e l o c i t y ;  r a t h e r ,  we 

made the  ca l cu la t ions  through computations of d i s t r i b u t i o n  func t ions  

i n  an appropriate i t e r a t i o n .  

From t h e  discontinuous va lues  of n"), T ( O )  and u (O) ,  we ca l cu la t ed  

t h e  d i s t r i b u t i o n  func t ions  i n  t h e  f i r s t  i t e r a t i v e  approximation; from t h e  

func t ion  thus  obtained we ca l cu la t ed  t h e  values of n 

which were placed i n  t h e  memory f o r  each of t h e  431 subdiv is ion  po in t s  along 

t h e  x-axis;  t h e  process then  w a s  repeated u n t i l  t he  i t e r a t i o n s  converged. 

( l ) ,  T ( l )  and u (1) , 

This d i f f e r e d  from method [81 p r inc ipa l ly  i n  t h a t  we used a gas dynamic 

d i scon t inu i ty ,  r a t h e r  than t h e  smooth so lu t ions  of the  Navier-Stokes. 

equation, a s  t he  zero approximation. 

The i t e r a t i o n  based on g a s  dynamic d i scon t inh i ty  i s  simpler,  s i n c e  

it does not r equ i r e  preliminary so lu t ion  of t h e  Navier-Stokes equation; 

however, i n  t h i s  ca se  an undesirable phenomenon occurs:  t he re  a r e  

flhumps'l on the  n ( x ) ,  T ( x ) ,  and u (x )  curves t o  the  r i g h t  of t he  i n i t i a l  jump 

(Figure 1) ( thus ,  t h e  "humpstf noted i n  reference [12] r e s u l t  from the  i n i t i a l  

d i scon t inu i ty ) .  In subsequent i t e r a t i o n s  t h e s e  "humps" d i s s i p a t e  and s h i f t  

towards +O0; they thus  d i s t o r t  t h e  boundary condi t ions  t o  t h e  r i g h t  of t h e  

jump. We applied t h e  method of improving convergence by a r t i f i c i a l  '%run- 

ca t ion  of t he  "humps" a s  soon as they  appear. Figure 1 shows 

t h a t  with each new i t e r a t i o n ,  less and less co r rec t ion  is required.  By 

t h e  end of t h e  s i x t h  or seventh i t e r a t i o n ,  t h e  magnitude of t h e  rrhumpsrc 
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i s  equal t o  t h e  accuracy of ca lcu la t ions  (0 .5%) ,  and t h e  

i t e r a t i o n s  themselves converge with t h e  same order  of accuracy. 

45 

2.0 

Figure 1. ---.- first i t e r a t i o n ;  - - - t h i r d  i terat ion;-  seventh i t e r a t i o n .  
Solut ion of t h e  k i n e t i c  r e l a x a t i o n  equation; 

For f u t u r e  r e fe rence ,  it i s  important t o  note  t h a t  t h e  p r i n c i p a l  approach 

t o  t h e  so lu t ion  is achieved i n  t h e  first three i t e r a t i o n s ,  even i f  t h e  

d iscont inui ty  p r o f i l e  is used a s  t h e  llzeroll approximation. 

Some q u a l i t a t i v e  explanation f o r  t h i s  may be given by considering 

formulae ( 4 )  and (5 ) .  I n  both formulas,  t h e  first t e r m  t o  t h e  r i g h t  

dominates t h e  second t e r m  a t  d i s tances  from t h e  boundary of order  A ;  i n  t h i s  

region t h e  f i r s t  i t e r a t i o n  considerably recons t ruc ts  t he  i n i t i a l  d i s t r i b u t i o n  



function. However, t h e  s o l u t i o n  of t h e  problem shows t h a t  t h e  jump thickness  

is -3A and t h r e e  i t e r a t i o n s  are required i n  order  t o  cover the  whole t r a n s i t i o n  

region. 

5. Solut ion of t h e  Boltzmann Equation L72 

The n ,  T, and u p r o f i l e s  ca lcu la ted  from the  k i n e t i c  model equation w e r e  

recorded on magnetic t ape  and served a s  t h e  bas i s  f o r  subsequent i t e r a t i o n s  

of t h e  Boltzmann equation. The zero i t e r a t i o n  was taken t o  be t h e  l o c a l  M a x w e l l  

d i s t r i b u t i o n  func t ion  f ( 5 ;  n ,  I\, u ) ,  wi th  parameter values which are s o l u t i o n s  

of t h e  model equation. Such a choice makes it poss ib le  t o  reduce t h e  calcu- 

l a t i o n s  i n  t h e  first i t e r a t i o n ,  s i n c e  t h e  i n t e g r a l s  v [f ] and N [f I f  ' 1  are 

a n a l y t i c a l l y  expressed through t h e  vector  5 and t h e  parameters n ,  T ,  and u ,  

t h e  quant i ty  V is given by formula ( 7 )  and N is determined from t h e  equi l ibr ium 

condi t ion 

+ 
0 

0 0  0 0 01 + 

0 0 

N o =  V O f O '  

The choice of t h e  l o c a l  Maxwell d i s t r i b u t i o n  funct ion as the zero i tera- 

t i o n  allows t h e  use of t h e  decreased dispers ion method, based on t h e  i d e n t i c a l  

transformation of t h e  c o l l i s i o n  i n t e g r a l  

Analogous c a l c u l a t i o n s  of v ( 2 )  and N ( 2 )  a r e  made. 

Each value of t h e  d i s t r i b u t i o n  funct ion i n  t h e  t h i r d  i t e r a t i o n  f ( 3 )  was 

ca lcu la ted  from an average of 200 f ( 2 )  values;  t he  c a l c u l a t i o n  of a s i n g l e  

f ( 2 )  value required approximately 200 f 

from approximately 15 f ( O )  values. 

funct ion w a s  ca lcu la ted  a t  each ( 5 ,  x )  poin t  from 600 f ( ' )  values. The integra-  

t i o n  r e s u l t s  a r e  represented i n  Figures 2-5. The dens i ty  and temperature values 

refer t o  t h e  values i n  t h e  oncoming s t r e a m ,  and t h e  s e l e c t e d  ve loc i ty  scale is 

(1) (1) values ,  while f w a s  ca lcu la ted  
( 2  1 When carrying out two i t e r a t i o n s  t h e  f 

+ 

vo = Tl/m. 

Figure 2 shows t h e  agreement of t h e  values of hydrodynamic parameters c a l -  

cu la ted  i n  t h e  f irst ,  second, and t h i r d  i t e r a t i o n s  of t h e  Boltzmann equation. 
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Figure 2: Solut ion of t h e  Boltzmann equation; .... first i t e r a t i o n ;  
++++ second i t e r a t i o n ;  ADAA t h i r d  i t e r a t i o n ;  0000 t h i r d  i t e r a t i o n  
on another i n i t i a l  p r o f i l e ;  - - - so lu t ion  of t he  r e l axa t ion  
equation. 

In order  t o  eva lua te  t h e  obtained approximation of a prec ise  numerical 

so lu t ion  of t he  problem, t h e  equation f o r  t h e  conservat ion of m a s s  flow 

i n  a plane shock wave is used: 

j .: t i ( ,r )u(x)  = H lII1. ( 8 )  

Since r e l a t ionsh ip  ( 8 )  is not  used i n  carrying out t h e  successive i t e r a t i o n s  

of t h e  Boltzmann equat ion,  t h e  devia t ion  of t h e  ca l cu la t ed  m a s s  flow 

from its t r u e  value permits judgment regarding t h e  convergence of t h e  

i t e r a t i o n s  and t h e  degree of t h e  achieved approximation t o  so lu t ion  

of t h e  problem. 

In t h e  second i t e r a t i o n  t h e  average devia t ion  { A j ( 2 ) )  a . 1 2 ,  which 

i s  approximately 4.5% of t h e  j value with a mean r e l a t i v e  e r r o r  of 

1% i n  ca lcu la t ing  j . (2 1 
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In  t h e  t h i r d  i t e r a t i o n  t h e  average devia t ion  < =-0.05, which 

is approximately 2% of t h e  j value and approximately equal t o  the  mean 
r e l a t i v e  e r r o r  i n  ca l cu la t ing  j ( 3 ) -  

One would expect t h a t  t h e  same approximate accuracy of convergence 

t o  t h e  t r u e  so lu t ion  of t h e  Boltzmann equation could be achieved. In tegra t ion  

a t  a number of po in t s  on t h e  x-axis was performed 

an addi t iona l  check on t h e  convergence of t h e  i t e r a t i o n s ,  s t a r t i n g  with 

a second "zero" i t e r a t i o n .  

(circles i n  Figure 2) as 

The l o c a l  M a x w e l l  func t ion  w a s  used as t h e  second llzero" i t e r a t i o n ;  

values  of n ( x ) ,  u ( x ) ,  and T(x) w e r e  ca lcu la ted  from t h e  first i t e r a t i o n  

of t h e  Boltzmann equation. 

Figure 2 shows t h a t  within the  l i m i t s  of s t a t i s t i c a l  

computation e r r o r  t h e  va lues  found f o r  u(x)  and T(x)  coincide with 

the  e a r l i e r  ca lcu la ted  values.  

Figure 2 a l so  shows u(x)  and T(x)  p r o f i l e s  ca lcu la ted  from t h e  

k i n e t i c  re laxa t ion  equation. The closeness  of t he  dens i ty ,  temperature 

and ve loc i ty  values  obtained from t h e  re laxa t ion  and Boltzmann equations a r e  

apparently a t t r i b u t a b l e  t o  t h e  f a c t  t h a t  a t  r e l a t i v e l y  s m a l l  M numbers, 

t h e  p r inc ipa l  r o l e  i n  forming shock wave s t r u c t u r e  is played 

by t h e  v i scos i ty  processes;  thermal conduct ivi ty  is a secondary process ,  

whose r o l e  is reduced t o  some r e d i s t r i b u t i o n  of t he  heat re leased  i n  the  

shock layer  [15]. 

The k i n e t i c  r e l axa t ion  equation which we used with a frequency 

chosen with "viscosity1I taken in to  account,  gives the  co r rec t  expression €or  

the  v i scos i ty  coe f f i c i en t  and thus descr ibes  viscous energy d i s s ipa t ion  well .  

Figure 3 shows t h e  change i n  t h e  thermal f l u x  i n  t h e  shock layer .  

It can be seen t h a t  t h e  r e l axa t ion  equation gives  a s i g n i f i c a n t l y  d i f f e r e n t  

Q(x )  value. 

H e r e  

Figure 4 shows t h e  changes i n  entropy S = l /n 

Qtx) = 6 1 r ( 5 - l ~ ) [ ( ~ - U ) 2 ; ~ z i r 2 ] f ( ~ ,  + x ) d &  - 
-b 

f In  fd5 i n  t h e  shock 

wave. L e t  us note  t h e  d i f fe rence  between the  accepted Boltzmann determination 

of entropy and t h e  thermodynamic entropy S =c ln(p /pY) ,  which is used i n  v v  
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t h e  desc r ip t ion  of t h e  method based on t h e  Navier-Stokes equation; it 

assumes condi t ions  t o  be c l o s e  t o  l o c a l  thermodynamic equilibrium. 

Q 

c 

-i 

-2 

-3 

- /75 

Figure 3 .  
- - - r e l a x a t i o n  equation. 

Thermal f l u x  i n  a shock wave; -A- t h i r d  i t e r a t i o n ;  

Figure 5 shows t h a t  t he  l o c a l  thermodynamic equilibrium 

conditions i n  a shock wave of average i n t e n s i t y  a r e  not f u l f i l l e d :  t h e  

g a s  possesses two s i g n i f i c a n t l y  d i f f e r e n t  temperatures,  of t r a n s l a t i o n a l  degrees 

of freedom: 

By d e f i n i t i o n :  

longi tudina l  temperature T 11 and t r ansve r se  temperature T 22 - 
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The u ( x )  and T(x) curves are used i n  computing shock wave thickness;  

it is defined by t h e  formula C161: 

- - 
The obtained values are d 

e s t i m a t e  reported i n  reference [l]. 

- 2?, and dU - 21; t hese  agree with Tam"s 
T 

Figure 6 gives t h e  p r o f i l e  of t h e  d i s t r i b u t i o n  funct ion f ( s ,  0 ,  0 ,  x ) ,  

ca lcu la ted  f o r  t h r e e  d i f f e r e n t  po in t s  i n s i d e  t h e  shock layer. 

L76 

Figure 4 .  Change of entropy i n  t h e  shock wave; entropy 
according t o  Boltzmann; - - - thermodynamic entropy. 
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I- % 
Figure 5. Longitudinal temperature T and t ransverse  temperature 11 

TZZ i n  the  shock wave. 

.. 

I -- 
- 4  . 0 4 $/d 

Figure 6. D i s t r ibu t ion  func t ion  p r o f i l e  a t  t h ree  poin ts  
i n s ide  t h e  shock layer. 
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THE SOLUTION OF THE RELAXATION PROBLEM FOR TI-E 
BOLTZMANN EQUATION BY THE INTEGRAL ITERATION 

METHOD 

Ye. F. Limar 

One of t h e  s imples t  problems involving the  Boltzmann equation is t h e  pro- L79 
blem of r e l axa t ion  of some i n i t i a l  d i s t r i b u t i o n  func t ion  which depends only 

on v e l o c i t i e s ,  t o  Maxwell’s d i s t r i b u t i o n  function. Ea r l i e r ,  t h i s  problem w a s  

solved by Wachman and H a m e l  [l] by t h e  d i s c r e t e  o rd ina te  technique [l]. The 

r e s u l t s  obtained i n  t h i s  work have shown t h a t  t h e  proposed v a r i a t i o n  of t h e  

method is not e f f e c t i v e  i n  a case ,  s i n c e  i n  t h i s  case the  dens i ty  

decreases s i g n i f i c a n t l y  with t i m e .  Other methods used f o r  t h e  s a m e  problem 

w e r e  those of F. G. Cheremisin [ Z ]  and Ye.  M. Shakhov [ 3 ]  i n  t h e  work published 

i n  t h i s  co l lec t ion .  

Let us w r i t e  t h e  Boltzmann equation f o r  t he  r e l a x a t i o n  problem i n  which t h e  

d i s t r i b u t i o n  func t ion  f ( t ,  u ,  v )  is t i m e  dependent and is a l s o  dependent on two 

o the r  var iab les  u and v ( t h e  v e l o c i t i e s  of r i g i d  sphe r i ca l  molecules) and i n  a 

c y l i n d r i c a l  coordinate system: 

here 

is t h e  c o l l i s i o n  frequency; 

- m o o 0  

is the  i n t e g r a l  of r e t u r n  c o l l i s i o n .  

The r e l a t i v e  ve loc i ty  of t h e  co l l i d ing  p a r t i c l e s  i n  t h e  c y l i n d r i c a l  co- 

o rd ina te  system has the  form 

10 - (11 - II  ,)cos e + sin o ( U  cos(  y - cp) -- U ,  cos( \p , - c p ) ) t  

and t h e  ve loc i ty  of molecules a f t e r  t he  c o l l i s i o n  is represented as follows: 
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Equation (1) is written in dimensionless form; in doing this, the following 

relationships are utilized: 

In these expressions, the quantities with asterisks are dimensional. Quation 

(1) was solved by the iteration method; as the zero iteration solution of the 

model Krook's equation was used, which in dimensionless form may be written as 

follows : 
fct ,  I!, u )  == (f, - f,) exp[ -4 ,525 t I  + f, 

( 2  l 

and as the initial distribution function, a function of the following form is 

selected 
2 2  

( 3  
2 2  f, = a 1  e x p ( - p l [ ( l t - U , )  t v 1)  + a 2 e s p ( - p z [ ( U + U 2 )  +V I ) ,  

where due to the earlier assigned form of the distribution function ( 2 )  when 

t = m, six parameters in the expression ( 3 )  were related by three equations, 

indicating time independence of density n, and temperature T, and the average 

velocity equaling to zero. 

The iteration process was carried out as follows. The velocity space u, v 

was subdivided into squares, the distribution function in each square being 

approximated by the second-order surface from the values of the distribution 

function at nine points. The set of all of these points forms a net- 

work of u, v values at the nodes of which the distribution function can be 

found from formula (1). The time integrals were calculated by the 

trapezoid method, while the L and G integrals were found by the Monte Carlo 
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method. It should be noted that a significant part of the machine time is 

-. . 

4 3  
-3- 

t 
Figure 1. Relaxation of the additional stress AP - 11' 

relaxation of book equation; - .... first iteration; xxx fourth iteration; 
AAA F. G. Cheremisin's C2l solution. 

L82 used in calculating the velocities of molecules after the collision, 

therefore, in this work the L and G integrals were calculated for all t values 

simultaneously. This permits a significant reduction in calculation time, 

In calculating the L and G integrals certain methods for the reduction of the 

distortion were used C41, which also reduced the computer time. At the end of 
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each iteration, coefficients of the approximating expression and the moments of 

the distribution functions were determined. The computation time for one 

iteration on 

minutes; the latter corresponded to the computation of integrals based on a 

sampling of 1,000 combinations. 

a BESM-6 computer for various combinations varied from 3 to 30 

Certain calculation results are shown in Figures 1 and 2, where changes 

of the moments are shown: 
A P , ,  = 2 n  Il ( f ( l l ,U)  - f o o ( U , U ) ) U 2 U : ; l d 9 ;  

s = - 2 7 c ~ J - ( f ( 1 ~ y u ) 1 ~ u  (u2  i- U 2 ) d l l d U  

and 

as a function of time for symmetrical initial functions with parameters 

n l  a 2  0,92; p L = =  p 2 =  4,71; U1 = IJ ,  = l/G* 

- qco+ 
- 0,006 

t 

Figure 2. Time dependence of the additional moments AT, 
An and S. 

The curves for deviations of density, temperature and heat flux from their 

equilibrium values give some idea concerning the accuracy of the calculation 

results, since in this case they must be constant and equal to zero. L83 
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For the above-mentioned initial function, which is characterized by a small 

deviation from equilibrium at the initial moments, calculations have shown 

rapid convergence of the integral iteration method. In attempting calculation 

from the initial function, which exhibits a large and asymmetrical deviation 

from equilibrium [ 3 ] ,  it was found that the calculations accuracy is 
reduced and as a result, after a certain number of iterations the 

results begin to diverge. The reduction in accuracy is associated with the 

fact that in this variation of calculations Maxwell's distribution function 
was subtracted in order to reduce dispersion in calculation of the L and G 

integrals. 
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APPROXIMATION METHOD FOR THE KINETIC BOLTZMA" EQUATION 

Y e .  M. Shakhov 

Introduct ion 

The b a s i s  f o r  t h e  k i n e t i c  theory of gases is t h e  Boltzmann equation, 

The d i f f i c u l t i e s  involved i n  its so lu t ion  are w e l l  known. These d i f f i -  

c u l t i e s  r e s u l t ,  f i r s t ,  from the  l a r g e  number of arguments i n  the  

d i s t r i b u t i o n  func t ion  ( i n  t h e  general  case equal t o  seven);  second, they 

are due t o  the  complex s t r u c t u r e  of the c o l l i s i o n  in t eg ra l .  

The most promising idea f o r  solving these  problems is derived from 

t h e  theory of r a r e f i e d  gases, wherein p r inc ipa l  a t t e n t i o n  is given t o  severa l  

f i r s t  moments of t h e  d i s t r i b u t i o n  func t ion ,  i.e. c e r t a i n  average c h a r a c t e r i s t i c s .  

This means t h a t  t h e  behavior of t h e  d i s t r i b u t i o n  func t ion  i n  t h i s  region 

of changing molecular v e l o c i t i e s ,  which does not change t h e  value of t h e  

pe r t inen t  moments ( i . e . ,  e spec ia l ly  i n  the  region of very la rge  and 

very small c h a r a c t e r i s t i c  molecular v e l o c i t i e s ) ,  is not s i g n i f i c a n t .  This 

idea is  used i n  d i f f e r e n t  ways i n  var ious methods f o r  solving problems 

i n  t h e  theory of r a r e f i e d  gases. 

In the  moments method, t h e  d i s t r i b u t i o n  funct ion is not ca lcu la ted  

a t  a l l ,  but is  assigned more or l e s s  a r b i t r a r i l y  with an accuracy t o  severa l  

macroscopic parameters,  which are subsequently determined from t h e  system 

of moment equations.  In  d i r e c t  numerical so lu t ions  of the  k i n e t i c  equat ion,  

t h e  above cons idera t ions  a r e  used f i r s t  of a l l  i n  choosing t h e  l i m i t s  f o r  

t h e  region of change i n  the c h a r a c t e r i s t i c  molecular ve loc i ty  ( t h e  bounded 

region is considered t o  be " i n f i n i t e , "  i f  i n  t h e  r e j ec t ed  p a r t  t h e  d i s t r i b u t i o n  

func t ion  is so s m a l l  t h a t  it does not s i g n i f i c a n t l y  change t h e  values  of 

t h e  pe r t inen t  first moments; t he  higher moments are genera l ly  

not taken i n t o  account) ,  and secondly, d i r e c t l y  i n  t h e  ca l cu la t ion  process  - /85 
( the  ca l cu la t ion  of many q u a n t i t i e s ,  def ining the  d i s t r i b u t i o n  func t ion ,  

i s  ca r r i ed  out with low accuracy).  

In an e a r l i e r  work [l] the  author  proposed a method f o r  approximating 

t h e  Boltzmann equation (more accura te ly ,  f o r  t h e  Boltzmann c o l l i s i o n  
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integral), based on requirements of equality of several first moment relation- 

ships from the precise and approximate collision operator. The purpose of the 

approximation is to replace the structurally complex collision integral of the 

Boltzmann equation with a significantly simpler one which preserves the princi- 

pal characteristics of the Boltzmann equation only to the extent dictated by 

the necessity of sufficiently accurate calculation of the pertinent distribution 

function moments. 

The idea of replacing the collision integral is not new. After the relaxa- 

tion model of the collision integral was proposed [Z], kinetic model equations 

became the subject of many investigations (for example, see [ 3 ,  4 ,  51). The 

most interesting of these works, devoted to generalization of the Krook 

equation, was carried out in the investigations of Holway [6]. 

The general method ordinarily used in constructing kinetic models is as 

follows. On the basis of physical considerations, reverse collision and 

collision frequency integrals are selected as functions of molecular velocities 

and a system of certain macroscopic parameters. The collision integral of the 

selected form conforms to the conservation equations, which leads to a decrease 

in the number of independent macroparameters; they may even (as in the case 

of Krook's moclel) be expressed in part through the distribution function moment. 

If the conditions for satisfying the conservation equation do not lead to 

expression of the necessary number of macroparameters through the distribution 

function moment, one can assume their dependence on the moments (as in Holway's 

model [6]). The remaining undefined macroparameters are determined from the 

condition of the coincidence of stresses and thermal fluxes in the limiting 

transition to a continuous medium, using the Enskog-Chapman method. 

Aside from this general method, which is ordinarily used in constructing 

the kinetic equations. the G r o s s  and Jackson method can be used for con- 

structing the linearized Boltzmann equation models [71; this is based on the 
use of the eigenfunctions of the linearized collision operator for the Maxwell 

molecular model. In contrast to the already-described L86 
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Krook and Holway method, which leads f i n a l l y  t o  one model, t h i s  method gives  

a r egu la r  procedure for  cons t ruc t ing  a sequence of k i n e t i c  model equations. 

I n  s p i t e  of t h e  s p e c i f i c i t y  of t h e  Gross and Jackson method, Sirovich 

[8] made an attempt t o  apply t h i s  method t o  t h e  nonl inear  Boltzmann equation 

by expanding t h e  d i s t r i b u t i o n  func t ion  which e n t e r s  t h e  c o l l i s i o n  in t eg ra l  

using Hermitian polynomials. A s  a l ready noted, t he  Krook-Holway method 

i n  its ordinary form does not  permit t h e  cons t ruc t ion  of a sequence of model 

equations. However, t h e  p o s s i b i l i t y  of general iz ing and construct ing 

consecutive approximate k i n e t i c  equations is inherent  i n  the method i t s e l f ,  

i f  one views it from t h e  s tandpoint  of moment equations.  

In f a c t ,  requi r ing  t h a t  t h e  conservation equat iom be s a t i s f i e d  is 

equivalent t o  t h e  combination of condi t ions of t h e  equa l i ty  of moments from 

t h e  c o l l i s i o n  in t eg ra l  of t h e  zero,  first,  and one moment of t h e  second 

order  t o  t h e  corresponding moments of t h e  Boltzmann c o l l i s i o n  in t eg ra l .  

The requirement of converting t o  a continuous medium can a l s o  be expressed 

by means of moment equat ions,  not by the  Enskog-Chapman method. 

For example, f o r  t h e  r e l a x a t i o n  model i n  t h e  Krook form it is  s u f f i c i e n t  

t o  Use second-order moment equations and t o  impose t h e  requirement 

t h a t  a l l  moments from t h e  c o l l i s i o n  in t eg ra l  t o  t h e  second order  inc lus ive  

coincide with t h e  corresponding moments of t h e  Boltzmann c o l l i s i o n  in t eg ra l  

with a constant  c o l l i s i o n  frequency (independent of t he  molecular 

v e l o c i t i e s ) .  By increasing t h e  number of condi t ions  imposed on the  

moments of t h e  c o l l i s i o n  operator  and se l ec t ing  it i n  a d e f i n i t e  form, 

one can obtain consecutive approximate k i n e t i c  equations with an approximate 

( i n  the  moments sense)  c o l l i s i o n  opera tor ,  which was i n  f a c t  proposed i n  

c11. 

L e t  u s  note  t h a t  t h e  Gross and Jackson method is e s s e n t i a l l y  a l s o  

based on t h e  use of t h e  moment r e l a t ionsh ips  f o r  t h e  c o l l i s i o n  i n t e g r a l ,  

s ince  eigenvalues of t h e  l i nea r i zed  c o l l i s i o n  operator  are i n  fact  its 

moments . 
This  work is devoted t o  f u r t h e r  development of a method f o r  

approximating the  Boltzmann equation. A case of pseudo-Maxwellian molecules 

is considered i n  d e t a i l .  A method of approximating the  
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c o l l i s i o n  frequency is discussed. A method f o r  approximating moments of the  

Boltzmann c o l l i s i o n  i n t e g r a l  is proposed. The approximation of t h e  c o l l i s i o n  

frequency and c o l l i s i o n  i n t e g r a l  moments enables one t o  reduce 

each k i n e t i c  equation approximating t h e  Boltzmann equation t o  a form which 

d i f f e r s  very l i t t l e  i n  complexity from Krook's model equat ion,  s ince  the  

r e t u r n  c o l l i s i o n s  i n t e g r a l  and t h e  c o l l i s i o n  frequency are expressed 

through t h e  d i s t r i b u t i o n  func t ion  moments. 

equa t iom thesame numerical method is appl icable  as f o r  Krook's equation; 

t h e  most promising is t h e  d i s c r e t e  v e l o c i t i e s  method [5]. 

L87 

For t h e  approximating 

Since t h e  p r inc ipa l  r e s u l t s  of t h e  work refer t o  t h e  approximation 

of t h e  c o l l i s i o n  i n t e g r a l  which determines t h e  r e l axa t ion  process ,  two 

problems on r e l axa t ion  i n  homogeneous unbounded space are solved as 

examples. 

1. General Approximation Scheme 
~ ~ ~~~ ~- 

f o r  t h e  Boltzmann Q u a t i o n  

To determine the  s t a t e  of r a r e f i e d  gas ,  we s h a l l  examine the  g a s  i n  

the  absence of any ex terna l  forces .  The p r inc ipa l  k i n e t i c  equation of 

t h e  theory of g a s e s ,  t h e  Boltzmann equa t ion ,& w r i t t e n  i n  the  form 

where f ( t , x . , t . )  is t h e  d i s t r i b u t i o n  func t ion;  si is t h e  molecular ve loc i ty  

vec tor ;  g is t h e  modulus of t h e  r e l a t i v e  ve loc i ty  of c o l l i d i n g  molecules; 

b and G a r e  c o l l i s i o n  parameters;  is a c o l l i s i o n  c r o s s  sec t ion ;  summation 

over t h e  recur r ing  ind ices  is proposed. W e  s h a l l  de f ine  t h e  d i s t r i b u t i o n  

funct ion moments i n  t he  ordinary way: 

1 1  

-+ 
p = tnn tn [ f d c ;  

pu,. = m j E i f d c ;  
+ 

P.. = tn r c :  c,. f{i(, c .  .= : - 11; : ' I  

m i c i i .  i f,i:2; I 1. 
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where m is molecular mass and 6 is t h e  Kronecker del ta .  
i j  

If t h e  func t ion  f satisfies t h e  Boltzmann equation, then,  as is w e l l  

known, its moments s a t i s f y  t h e  i n f i n i t e  system of moment equat ions,  obtained 
2 

by multiplying (1) by 1, s i ,  5 , 5,s j ,  5,s js,, etc. ,  and subsequent in tegra-  

t i o n  over t h e  e n t i r e  v e l o c i t y  space. H e r e  it is assumed t h a t  a t  high 

v e l o c i t i e s  5 f decreases q u i t e  rap id ly , so  t h a t  a l l  t h e  i n t e g r a l s  are real. 

However, t h i s  does not  mean t h a t  t h e  system of moment equations (even an 

i n f i n i t e  one) is equivalent  t o  t h e  Boltzmann equation, The reverse  argument, 

t h a t  i f  t h e  system of d i s t r i b u t i o n  funct ion moments sat isf ies  t h e  moment 

equat ions,  t h e  d i s t r i b u t i o n  funct ion i tself  satisfies t h e  Boltzmann equat ion,  

has no substance,  s i n c e  w e  do not know how t o  convert a system of moment 

equations t o  t h e  Boltzmann equation. In order  t o  make t h i s  poss ib l e ,  addi t iona l  

assumptions regarding t h e  expression of t h e  d i s t r i b u t i o n  funct ion through t h e  

moments and regarding t h e  smoothness of these moments and t h e i r  convergence 

must be made. 

i' 

The s t r u c t u r e  of moment equations is w e l l  known [5,  91,  and w e  s h a l l  

not give them here. 

In addi t ion  t o  t h e  prec ise  k i n e t i c  equation, l e t  us  consider t h e  approxi- 

m a t e  equation 

where Q is an approximate c o l l i s i o n  operator  which depends on t h e  d i s t r i b u t i o n  

funct ion F ,  molecular v e l o c i t i e s  and some set  of macroscopic func t ions ,  

designated by a s i n g l e  l e t te r  a ( t ,  x . ) .  The form of t h e  operator  Q is thus 

s t i l l  random. 
1 

W e  s h a l l  ca l l  equation ( 2 )  an equation which approximates t h e  Boltzmann 

equation i n  t h e  moment sense, i f  a c e r t a i n  number of first-moment equations 

of t h e  approximating and prec ise  k i n e t i c  equations coincide. Since t h e  

d i f f e r e n t i a l  p a r t s  of equations (1) and ( 2 )  coincide,  t h e  d i f f e r e n t i a l  p a r t  

of t h e  moment equations must a l s o  coincide. Consequently, a necessary and 

s u f f i c i e n t  condi t ion f o r  t h e  coincidence of t h e  moment equations is an 

e q u a l i t y  of t h e  corresponding moments of t h e  approximate and prec ise  
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c o l l i s i o n  opera tors ,  i.e. 

More r igorous ly ,  equation ( 2 )  w i l l  be c a l l e d  an approximating equation 

of t h e  nfh approximation f o r  t h e  Boltzmann equation i f  condi t ions  ( 3 )  are 

f u l f i l l e d  f o r  a l l  JI ,  which inc ludes  power-law monomials with r e spec t  t o  

ve loc i ty  components of t h e  nfh order.  I f  i n  t h e  nfh order  approximation not 

a l l  power-law monomials of t h e  nm order  a r e  used, but only p a r t  of them, the  

approximation w i l l  be c a l l e d  an incomplete nth order  approximation. 

Equations ( 3 )  f o r  t h e  assigned form of t h e  opera tor  Q as a func t ion  of 

F, Si and a ( t , x i ) ,  se rve  

q u a n t i t i e s  a ( t , x . )  a t  each poin t  i n  physical  space a t  each “ent of 

t ime; t h e  number of unknowns must be t h e  same as t h e  number of equations. 

as t h e  d e f i n i t i o n  of t h e  set of macroscopic 

1 

Conditions ( 3 )  have a simple phys ica l  meaning. In fac t ,  f o r  a 

random d i s t r i b u t i o n  func t ion  F ( t , x i , t i ) ,  t h e  quant i ty  Fd? is  t h e  number 

of molecules (i .e. ,  a t  v e l o c i t i e s  within 5 t o  <+dz l i m i t s )  a t  t h e  

point x of t h e  physical space a t  t i m e  t. The quan t i ty  

J(F)dS is t h e  r a t e  i n  change of t h e  number of molecules 5 as a r e s u l t  of 

c o l l i s i o n s ,  and t h e  quant i ty  5 . 5  . J (F)df ,  f o r  example, is  t h e  r a t e  of change 

i n  t h e  momentum flux component due t o  changes i n  t h e  number of molecules < r e s u l t i n g  from c o l l i s i o n s ,  where t h e  i n t e g r a l  of S .S .J (F)d t  is t h e  r a t e  

of change i n  t h e  same momentum component due t o  t h e  c o l l i s i o n s  of a l l  

molecules. 

3 + 

+ !  + 

1 J  

+ 
1 J  

Thus, condi t ions  ( 3 )  requi re  t h a t  t he  opera tor  Q have the  conservation 

of p rope r t i e s  of an exact c o l l i s i o n  operator with respec t  t o  t h e  q u a n t i t i e s  de- 

termined for a l l  c o l l i d i n g  molecules: t h e  ra te  of change i n  t h e  number of 

p a r t i c l e s ,  momentum, energy, momentum f l u x ,  etc. 

Equation ( 2 )  with an approximate c o l l i s i o n  operator s a t i s f y i n g  conditions 

( 3 )  , even i f  t h e  choice of Q is  not made s p e c i f i c a l l y  as a func t ion  of F, 

Ti and a ( t , x i ) ,  l eads  t o  some i n t e r e s t i n g  conclusions. 

moment equat ioas  obtained from (2) with condi t ions  ( 3 )  give accura te  solu- 

t i o n s  f o r  any f i n i t e  number of t h e  f i r s t  moments of t h e  d i s t r i b u t i o n  

S p e c i f i c a l l y ,  
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function of s p a t i a l l y  uniform flows of a Maxwellian gas  [ lo,  111. This 

conclusion follows d i r e c t l y  from the  coincidence of t h e  moment equations and L90 
t h e  p rec i se  equations with a s u f f i c i e n t  number of i n d e f i n i t e  func t ions  a ( t ,  x . )  

and given i n i t i a l  condi t ions  f o r  t h e  sought moments. If a l s o  follows from t h e  

coincidence of movement equations f o r  motions of Maxwellian gas  c lose  t o  

equilibrium t h a t  p r e c i s e  Navier-Stokes equations may be obtained i n  a conven- 

t i o n a l  manner [ 9 ,  51. 

1 

2. 

L e t  us now choose t h e  form of t h e  Q operator.  In  order  f o r  equation ( 2 )  

Form of an Approximate .- __ Col l i s ion  Operator 

t o  approximate the  fundamental k i n e t i c  equation (1) as well  as poss ib l e ,  it is 

necessary t o  select Q i n  t h a t  form which is c l o s e s t  t o  t he  form of the  Ebltxmann 

c o l l i s i o n  in t eg ra l .  By analogy with the  J i n t e g r a l ,  w e  s h a l l  t ake  Q i n  t h e  form 

Q - Q + -  N F ,  ( 4 )  

c 
where Q and N are t h e  approximate opera tor  of t h e  r e t u r n  c o l l i s i o n s  and t h e  

approximate c o l l i s i o n s  frequency, respec t ive ly .  

The sepa ra t ion  of Q i n t o  operators of d i r e c t  and r e tu rn  c o l l i s i o n s ,  i . e . ,  

representa t ion  i n  the  form of ( 4 1 ,  is highly s i g n i f i c a n t ,  s ince  the  d i r e c t  

c o l l i s i o n  i n t e g r a l  IW descr ibes  c o r r e c t l y  ( i n  the  q u a l i t a t i v e  sense)  t he  

s c a t t e r i n g  of a random beam of molecules with any f i x e d  ve loc i ty  i n  a medium 

of o ther  g a s  molecules. 

The Qt and N opera tors  w i l l  be considered func t ions  of t he  thermal v e l o c i t i e s  

of molecules c and some set  of macroscopic parameters a ( t ,  x . )  and b ( t ,  x i ) :  
i 1 

Q + =  Q + ( c  i t  ~ ( t ,  X; )I: 

N =I N ( c , ,  b(t, X; )I. 

In order t o  determine the  s e t  a ( t ,  x . )  and the  s e t  b ( t ,  x i ) ,  one can use 
1 

moment r e l a t ionsh ips  of type ( 3 1 ,  but s epa ra t e ly  f o r  t h e  r e t u r n  c o l l i s i o n  

i n t e g r a l  and t h e  d i r e c t  c o l l i s i o n  i n t e g r a l :  



(6) 

Moment r e l a t i o n s h i p s  ( 3 )  are automatically s a t i s f i e d  i n  t h i s  case. 
+ + L e t  U S  represent  Q i n  t h e  s a m e  form t h a t  J has i n  t h e  Mawellian 

d i s t r i b u t i o n  func t ion ,  i.e., i n  t h e  form of t h e  product of t h e  c o l l i s i o n  

frequency N and some F 
molecules a f te r  c o l l i s i o n s ,  

+ charac te r iz ing  t h e  v e l o c i t y  d i s t r i b u t i o n  of 

+ + Q = N ( c ~ ,  b ( t , X ; ) ) F  ( ~ ; , a ( t , x i ) ) .  

With Q+ 

resented i n  t h e  form 

of t h e  s e l e c t e d  form, t h e  complete c o l l i s i o n  i n t e g r a l  Q is rep- 

Representation i n  form ( 7 )  is expedient i n  t h a t  it sa t i s f ies  most e f f i c i e n t l y  

t h e  condi t ions of l o c a l  equilibrium flow or complete s t a t i s t i ca l  equilibrium. 

For convenience i n  subsequent references,  w e  s h a l l  r e w r i t e  r e l a t i o n s h i p  

( 3 )  with t h e  use of ( 7 )  

Assuming t h e  c o l l i s i o n  frequency t o  be known ( t h e  quest ion of 

t h e  approximation of N w i l l  be considered i n  Sect ion k ) ,  w e  s h a l l  t u r n  t o  

t h e  choice of t h e  form of t h e  F function. The only necessary condition f o r  

t h e  F func t ion  is t h a t  when t h e  process approaches equilibrium (complete 

or l o c a l )  t h i s  func t ion  must converge t o  t h e  M a x w e l l  function. A l l  o ther  

c h a r a c t e r i s t i c s  of F are  f a i r l y  a r b i t r a r y .  

+ 
+ 

+ 

From t h e  physical  s tandpoint  it is  tempting t o  apply t h e  most prob- 

a b l e  d i s t r i b u t i o n  p r i n c i p l e  f o r  t he  choice of F f ,  as was proposed 

i n  [61 f o r  t h e  c o l l i s i o n  frequency, nondependent. on veloci-  

t ies .  Generalization t o  t h e  random frequency case is not 

d i f f i c u l t ,  s i n c e  it plays no r o l e  i n  choice of t h e  F+ form. 
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+ 
W e  s h a l l  introduce t h e  moments of funct ion F as t h e  system of macro- 

parameters a ( t , x . ) ;  t hese ,  i n  a c e r t a i n  sense,  can be in te rpre ted  as 

dens i ty ,  momentum, temperature, etc., of t h e  c o l l i d i n g  p a r t i c l e s .  By 

assuming a c e r t a i n  number of  moments F t o  be known and using t h e  p r i n c i p l e  

of t h e  most probable d i s t r i b u t i o n ,  w e  obtain an exponential  expression 

f o r  F+, containing i n  t h e  exponent a c e r t a i n  polynomial 

t i es  of t h e  molecules, with c o e f f i c i e n t s  expressed 

The Ft moments themselves are expressed as t h e  moments of t h e  

c o l l i s i o n  i n t e g r a l  using i n t e g r a l  r e l a t i o n s h i p s  ( 3 )  or (5).  

1 

+ 

f o r  t h e  thermal veloci-  

through t h e  F+ moments. 

S p e c i f i c a l l y ,  if considerat ion is l imi t ed  t o  t h e  first f i v e  moments, - /92 
+ 

corresponding t o  inva r i an t  c o l l i s i o n s ,  then F can be obtained i n  t h e  form of t h e  

M a x w e l l  func t ions  with dens i ty ,  v e l o c i t y  and temperature of t h e  c o l l i d i n g  

molecules, i.e., a generalized KTook's model with t h e  frequency of c o l l i s i o n s  

dependent on t h e  v e l o c i t y  of  molecules [ 3 ]  is  obtained. If a l l  second-order 

F+ moments a r e  taken i n t o  account, an e l l i p s i o d a l  d i s t r i b u t i o n  [61 

is  obtained. 

When using t h e  maximum probabi l i ty  p r i n c i p l e  f o r  the choice of F', 

it must be remembered t h a t  t h e  i n t e g r a l s  may diverge [12, 51. However, 

t h i s  d i f f i c u l t y  can e a s i l y  be avoided by appropriate  choice of t h e F t  
moments which a r e  used as addi t iona l  condi t ions f o r  determining t h e  

most probable d i s t r i b u t i o n .  

A more s i g n i f i c a n t  d i f f i c u l t y ,  a r i s i n g  from t h e  use of t h e  F+ funct ion 

i n  t h e  considered form is t h a t  equations ( 3 )  and (5)  f o r  determining t h e  

system of macroscopic parameters a r e  complex transcendental  

equations which must be solved a t  each point t ,  x However, one can 

assume t h a t  F+ is c lose  enough t o  t h e  l o c a l  Maxwell d i s t r i b u t i o n  

funct ion F 'O)  t h a t  it can be represented i n  a simpler form [ I ] :  

i' 

+ 
When F is i n  form (9)  and t h e  s t i p u l a t e d  c o l l i s i o n  frequency is N ,  

moment r e l a t i o n s h i p s  ( 8 )  comprise a system of l i n e a r  a lgebra ic  equations 
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with respec t  t o  the  expansion coe f f i c i en t s  (9).  

If necessary,  t h e  representa t ion  of F+ (9 )  may be improved 

by replacing F (O)  

meters of t he  molecules p a r t i c i p a t i n g  i n  c o l l i s i o n s ,  i.e., by the  most pro- 

bable func t ion  f o r  t he  s t i p u l a t e d  dens i ty ,  average ve loc i ty  and 

t h e  temperature of t h e  c o l l i d i n g  molecules. 

func t ion  are determined by the  conservation equations.  

meters which a r e  contained i n  (9)  must be decreased. Instead of ( 9 )  w e  

s h a l l  have an expression 

by a M a x w e l l  funct ion corresponding t o  t h e  average para-  

Parameters of t h i s  most probable 

The number a of para- 

(10) 

( 3 )  + 
L I . .  = o ;  c ' =  c i  - 1 1 ; ,  

1 1  
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Here Fc ( O )  is t h e  Maxwell funct ion with parameters n+,  
+ + 

u and T , corresponding t o  t h e  co l l i d ing  molecules. These parameters and the  

( 3 ) ,  e t c . ,  expressed through the  Ft moments a r e  c o e f f i c i e n t s  a i j  , aijk 

obtained as so lu t ions  of a system of equations obtained from (8) when F 

(2) 
i 

+ 
2 is  i n  form (10) and 9 ,  equal t o  1, X i ,  5 , (1-6ij)5i5j,  ci5j5,, e tc .  

Henceforth we w i l l  consider expression (9 )  t o  be the  p r inc ipa l  approxi- 

mating formula f o r  F , i n  which, apparent ly ,  one can convert from power 

monomials t o  Hermitian polynomials. 

Thus, f o r  t h e  r e tu rn  c o l l i s i o n s  i n t e g r a l  w e  ob ta in  t h e  p r inc ipa l  

approximating formula i n  t h e  form 

where the  expansion c o e f f i c i e n t s  (11) a r e  defined by the  moment r e l a t ionsh ips  ( 8 )  

or r e l a t ionsh ips  ( 5 ) .  In o the r  words, it is  proposed t h a t  t h e  r e t u r n  

c o l l i s i o n s  i n t e g r a l  be approximated by the  f i n i t e  sum of t h e  corresponding 

Fourier  s e r i e s .  

Le t  us note t h a t  t h e  app l i ca t ion  of t he  Enskog-Chapman method t o  the  

Boltzmann equation gives  t h e  following expression f o r  the  r e tu rn  c o l l i s i o n  

i n t e g r a l  
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where f(O) is the local Maxwell distribution function; V ( O )  is the collision 

frequency determined from the local Maxwell functions, and p, is the gas 

viscosity coefficient. 

In order for the Fourier series (11) for the return collisions integral 

t o  converge in the least squares 

is sufficient 

s 

However, the average convergence 

associated with the condition of 

sense, existence of the following integral 

in the entire unbounded velocity space, 

sufficiently rapid attenuation at infinity, 

has no significance if we are interested in the behavior of third and 

lower-order distribution function moments. 

From this standpoint it is important to have uniform convergence of 

J (F) and the distribution function in that part of the unbounded region 

in which the behavior of F produces the most significant contribution to 

the value of the first moments which are of interest to us. The behavior 

of the distribution function for very high velocities, on which higher 

moments are dependent, has no significance and in numerical calculations 

is not taken into account. This situation, as well as the fact that for 

any F function the reverse collisions integral J (F) is a continuous velo- 

city function, real at each point of the physical space x at random time 

t, indicates uniform and sufficiently rapid convergence of the solution with 

respect to the distribution function moments. 

+ 

+ 

i 

In concluding this section let us note the following: formulation (11) 

for the return collisions integral is analogous in form to that proposed 

by Grad [91 for representation of the distribution function in the form of 

a series (or a finite sum) in Hermitian polynomials, multiplied by the 

local Maxwell distribution function. The principal difference between J (F), 

in the case of stipulated F functions and the distributing function itself 

is that J (F) is a local velocity function, determined at each fixed point 

in the physical space, in this function playing the role of a parameter, 

whereas the distribution function itself characterizes the state of the gas 

as a whole in the whole phase space region. For J (F), therefore, represen- 

tation in the form of a function with separable variables of type (11) is 

+ 

+ 

+ 
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admissible from t h e  physical  point  of view. For t h e  d i s t r i b u t i o n  func t ion ,  

on t h e  o the r  hand, such a representa t ion  is unnatura l ,  s i n c e  it s t i p u l a t e s  

a c e r t a i n  l o c a l  g a s  s ta te  with the  accuracy of t h e  expansion 

c o e f f i c i e n t s ;  i.e., it ass igns  parameters of s t a t e ,  which are then 

determined from some d i f f e r e n t i a l  o r  i n t e g r a l  equat ions,  averaged over 

t h e  ve loc i ty .  The p r inc ipa l  c h a r a c t e r i s t i c  of t h e  r a r e f i e d  g a s ,  associated 

with t h e  free motion of  molecules over a s i g n i f i c a n t  d i s t ance  (exceeding 

i n  order  of magnitude t h e  dimensions of t h e  elementary ce l l s  of t h e  physical  

space,  which from t h e  macroscopic s tandpoint  may be considered i n f i n i t e s i m a l ) ,  

is t h a t  t h e  d i s t r i b u t i o n  func t ion  has a s i g n i f i c a n t  component i n  which the  va r i -  

ab les  

F i n  t h e  form of an expansion with separable  va r i ab le s  is l o s t .  From 

t h i s  standpoint it is apparent t h a t  t h e  d i s t r i b u t i o n  func t ions  i n  t h e  form 

t ,  x i ,  si e n t e r  as combinations xi-git,  while t h e  representa t ion  of - /95 

(0) F - F  ( ~ + c c . . c ~ c .  + a i i k c i c . c  + ...) 
L I  I I k  

can descr ibe  only t h e  hydrodynamic motion of g a s .  

3 .  Approximation of Boltzmann Quat ion  
f o r  Pseudo-Maxwellian G a s  - 

In  t h e  two previous sec t ions  a general  approximation scheme 

w a s  described on t h e  b a s i s  of moment r e l a t i o n s h i p s  f o r  t h e  c o l l i s i o n  

i n t e g r a l ,  and the  form of an approximate r e tu rn  c o l l i s i o n s  operator  was 

se l ec t ed  assuming the  c o l l i s i o n  frequency t o  be known. 

Approximation of t h e  c o l l i s i o n  frequency w i l l  be considered i n  d e t a i l  

i n  t h e  next sect ion.  H e r e  we s h a l l  consider  t h e  problem of approximating 

t h e  p r inc ipa l  k i n e t i c  equation f o r  pseudo-Maxwellian gases, i.e., f o r  gases 

cons is t ing  of spher ica l  molecules with c o l l i s i o n  c ros s  sec t ions  inverse ly  

proport ional  t o  t h e  r e l a t i v e  ve loc i ty  of t h e  c o l l i d i n g  molecules. 

ca se  t h e  c o l l i s i o n  frequency is independent of t he  r e l a t i v e  ve loc i ty  

of t h e  co l l i d ing  molecules, which is t h e  s implest  approximation f o r  t h e  

c o l l i s i o n  frequency. Moreover, when a l l  moments of t he  c o l l i s i o n  i n t e g r a l  

art. expressed through the  d i s t r i b u t i o n  func t ion  moments, t he  

quest ions of s a t i s fy ing  t h e  equilibrium condi t ion and t h e  t ransformation 

to Euler and Navier-Stokes equations can be solved i n  an elementary fashion. 

I n  t h i s  
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L e t  us assume, by analogy wi th  . the Krook r e l axa t ion  equat ions,  t h a t  where 

is the  g a s  v i s c o s i t y  c o e f f i c i e n t  and F + ,  as  before ,  is described i n  formula (9) .  

Consider immediately t h e  second approximation, <.e., preserve t h e  power 

monomials i n  (9)  up t o  an? including t h e  second power. 

In  equations (8), ins tead  of system 
\ y =  1, G i >  C i C j  

we can write 
q,= ~ , C i t c i ~ j *  

Considering t h a t  f o r  pseudo-Maxwellian molecules 

we obta in  
( 0 )  ( 1 )  ( 2 )  

(1 ==ai 1 a . .  - 0 .  
L I  

Thus, we obta in  a Krook's model equation as t h e  second approximating 

equation : 

For t h e  t h i r d  approximation, w e  s h a l l  l i m i t  ourselves  t o  representa t ion  

of F+ as a form of convolute Hermitian polynomials. Represent 

To determine a set of c o e f f i c i e n t s  a ( t , x i )  from ( 8 ) ,  we can a l s o  m a k e  

use of t h e  corresponding orthogonal polynomials 

I f ,  i n  addi t ion t o  (131, we take i n t o  account t h e  equation 

2 +  P 2 -Pr  - S i ,  Pr - 3 I i i i  = m l c i c  J d e  IJ, 

w e  obtain 

97 



I I l l 1  Ill1 I I l l  

here  Pr is t h e  Prandt l  number. 

Thus, as t h e  approximating equation of t h e  incomplete t h i r d  approxi- 

mation, w e  ob ta in  a generalized Krook equation 

a F  
i 

( F + -  F); aF  
x 

d l  + 5i dx = 
- (14) 

+ + 
L e t  us note t h a t  F according t o  (14) co inc ides  exac t ly  with F as 

defined i n  t h e  f i r s t  approximation using t h e  Enskog-Chapman method (see  (12 ) ) .  

From t h e  moment equations obtained by multiplying (14) by 1, si, 5 , 
Cis2 and subsequent i n t e g r a t i o n  over t h e  whole v e l o c i t y  space, w e  

/97 
2 

obta in  a Navier-Stokes equation with co r rec t  va lues  of t h e  v i s c o s i t y  and 

thermal conduc+;vity c o e f f i c i e n t s  when 7 -? 0. 

Equation (14) may a l s o  be c a l l e d  t h e  eight-moment approximation k i n e t i c  
+ 

equation, s ince  F is determined by e ight  moments. It is consequently 

poss ib l e  t o  cons t ruc t  a closed system of i n t e g r a l  equations with respec t  t o  

themoments n ,  u From t h i s  standpoint t h e  Krook equation is 

a f i v e  moment k i n e t i c  equation. In c o n t r a s t  t o  t h e  t h i r t e e n  moment Grad 

approximation, obtained by formal c losu re  of t h e  moment equat ions ,  t h e  

s y s t e m  c losure  i n  t h i s  case takes p lace  through the  

k i n e t i c  equation, so  t h a t  t h e  behavior of t h e  d i s t r i b u t i o n  func t ion  a t  some 

poin t  t ,  x is determined by t h e  d i s t r i b u t i o n  of moments i n  t h e  whole reg ion ,  

not by the  values of these  moments a t  t h e  considered poin t .  

T ,  and Si. i' 

i 

This approximation process can be continued. Here, due t o  the  or- 

thogonal i ty  of t h e  Hermitian polynomials with the  weighting func t ion  F'(O!, system 

( 3 )  is  solved i n  an explicit ,  form and the  c o e f f i c i e n t s  a('), a i  

expressed through t h e  d i s t r i b u t i o n  func t ion  moments. Thus, s e t s  

of equations which approximate t h e  Boltzmann equation are obtained. These 

equations can be viewed as model equations f o r  random molecules. 

(1) , ... a re  

The p r inc ipa l  d i f f e rence  between t h i s  approach and Holway's method 



of constructing the model equation [61  is, as already noted in the introduction, 

the use of condition ( 3 )  for the moments of the approximate collision integral; 

this enables the development of a regular procedure for constructing approxi- 

mate kinetic equations from a single viewpoint. 

may also be selected on the basis of the most probable distribution principle. 

The form of the F+ function 

Let us also note that the generalized kinetic Krook model, which insures 

the correct Prandtl number in transition to a continuous medium, can be ob- 

tained in another form by using moment relationships up to the second order and 

selecting the collision frequency by an appropriate method, as was done in [ 6 ] .  

Let us now consider the equilibrium solutions of approximate equations 
+ in a homogeneous unbounded state. Turning to moment equations ( 8 )  when F is 

in form ( 9 ) ,  we will obtain zeros on the left, since at equilibrium the 

following must hold: 

+ F = F .  

Consequently, for equation (141, for example, we obtain 

si = 0 ,  

i.e., in the case of a Maxwellian equilibrium distribution, it is the only one 

possible. 

Let us now turn to the Boltzmann H-theorem, by means of which the unique- 

ness of the Maxwell distribution is established as the equilibrium solution 

of the Boltzmann equation. Unfortunately, rigorous proof of the H-theorem with 

F in the form ( 9 )  is not possible, since F and consequently F, can be nega- 

tive. However, one can expect that for most cases the expansion coefficients 

( 9 )  will be sufficiently small, and F will be negative only in the region of 

very high velocities, where F itself is small. 

+ + 

Consider the case of small deviations from equilibrium in a homogeneous 

space and limit analysis to equation (141, the simplest of the approximate 

kinetic equations which insure the correct Prandtl number. 

L98 

Multiplying the left and right sides of equation (14) for the case of 

homogeneous space, after an obvious transformation of the right-hand side 

we obtain, 
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+ Taking advantage of t h e  smallness of Si, w e  l i n e a r i z e  I n  F and 

u t i l i z e  moment r e l a t i o n s h i p  (81, t h u s  obtaining,  when Pr  = 2/3, 

2 
1 + F -t 8 S i i  f ( F - F  I l n -  d t - -  a I1 

F+ 45 P ( 2 ~ ~ ) 3  
x=-- 7 

(15) 

According t o  ( l 5 ) ,  t h e  Boltzmann H-function dec reaseswi th  s u f f i c i e n t l y  

s m a l l  dev ia t ions  from equilibrium. However, as w e  have a l ready  seen ,  t he  

quest ion of t h e  uniqueness of t h e  M a x w e l l  d i s t r i b u t i o n  a t  equi l ibr ium gives  

a unique so lu t ion  r ega rd le s s  of whether o r  no t  is is  poss ib l e  t o  prove 

t h e  H-theorem f o r  t h e  corresponding approximate equation. 

4 .  ADwroximation of Col l i s ion  Freauencies  

The quest ion of whether o r  no t  it is poss ib l e  t o  consider  molecules 

pseudo-Maxwellian and, consequently,  t o  assume t h e  c o l l i s i o n  frequency 

t o  be independent of molecular v e l o c i t i e s ,  depends on the  condi t ions 

of t h e  problem and t h e  g a s  p roper t ies .  Conditions do ex i s t  under 

which it  is not poss ib l e  t o  dismiss i n  advance the  dependence of c o l l i s i o n  

frequency on the  ve loc i ty  of molecules. 

I n  t h i s  s ec t ion  w e  s h a l l  consider  poss ib l e  ways of approximating 

c o l l i s i o n  frequencies .  

I n  re ference  [ I ]  it w a s  proposed t o  u t i l i z e  t h e  c o l l i s i o n  frequency 

determined from t h e  l o c a l  Maxwell d i s t r i b u t i o n  func t ion ,  i.e., instead of 

using t h e  frequency 

For most problems t h i s  formula apparent ly  g ives  s u f f i c i e n t l y  good 

approximations f o r  N ,  s i n c e  i n  general  it c o r r e c t l y  descr ibes  the  dependence 

of c o l l i s i o n  frequency on ve loc i ty .  In  p a r t i c u l a r ,  f o r  l a r g e  c ,  

( 0 )  N - N  - n a c .  
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Other approximate c o l l i s i o n  frequency formulas, determined by t h e  s p e c i f i c  

condi t ions of t h e  problem, are a l s o  possible .  

In  p r i n c i p l e ,  moment r e l a t i o n s h i p s ( 6 )  f o r  t h e  r e t u r n  c o l l i s i o n s  i n t e g r a l  

m & e  poss ib le  a more exact formulation O f  any i n i t i a l  COlliSiOn frequency 

approximations. In  f a c t ,  by assigning deviat ion from N , f o r  

instance,  defined by formula (171, i n  t h e  form of a series of some func t ions  

of c f o r  determining t h e  c o e f f i c i e n t s  i n  t h i s  series,  from (6) w e  

obtain a system of l i n e a r  equations. 

(0) 

i 

Keeping i n  mind t h a t  devia t ions  of N from N(O) must be maximum near 

t h e  boundaries or i n i t i a l  cond i t ions ,  t h e  frequency determined from 

t h e  d i s t r i b u t i o n  func t ion  i n  t h e  form 

w i l l  give a good approximation of  t h e  c o l l i s i o n  frequency; 

F and t correspond t o  t h e  i n i t i a l  boundary condi t ions of t he  problem. 

The b ( t ,  x . )  c o e f f i c i e n t s  a r e  defined by r e l a t i o n s h i p  (6 ) .  However, 

mult iple  i n t e g r a l s  over a complex region of i n t e g r a t i o n  arise. 

0 0 

1 

A simpler way of approximating t h e  c o l l i s i o n  frequency ( i f  N i s  not 

('1 ) apparently l i e s  i n  using approximation /loo suf f i c  i e n t  l y  w e 1  1 approximated by N 

formulas f o r  t h e  r e l a t i v e  v e l o c i t y  g of t h e  c o l l i d i n g  molecules. L e t  u s ,  

for instance,  use t h e  expansion for low and f o r  high v e l o c i t i e s .  For 

s impl i c i ty ,  consider  t h e  case when t h e  c o l l i s i o n  c r o s s  sec t ion  IS is  indepen- 

dent of g. 

- 

For s m a l l  c values w e  have t h e  formula: 

The subscr ip t  tlOfl i nd ica t e s  t h a t  t he  q u a n t i t y  w a s  taken when c = 0. The values 

of t h e  d e r i v a t i v e s  i n  (17) are expressed by t h e  formulas: 
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For velocities c with sufficiently large modulus, one can utilizean 

Let us write g in the form asymptotic expansion of N. 

g -  JT c + c  2 s = c  /T I + - - 2 - ,  s = c i c i 1 .  
c 2  c 2  

For c c the following holds: 
1' 

with second order accuracy for the very small residuals. 

this expansion into the collision frequency expression, we 

obtain the following asymptotic representation of N: 

By substituting 

At equilibrium, when p : = 0, we obtain an asymptotic expression which 

coincides with the asymptotic expression for the local equilibrium 
collision frequency for spherical molecules, 

ij 

/lo1 

Formulas (17)-(19) give expressions for the collision frequency 

through the distribution function moments. 

5. Approximation of the Collision Integral -- Moments 

The collision integral moments are the most complex expressions 

of all those which have been considered. In the general case, they are 
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expressed by eight-dimensional i n t e g r a l s  ( in tegra t ion  over t h e  c o l l i s i o n  

parameters and double in t eg ra t ion  over ve loc i ty  space).  

t h a t  i n t eg ra t ion  over t h e  c o l l i s i o n  parameters can be done a n a l y t i c a l l y ,  

which reduces t h e  i n t e g r a l s  to six-dimensional form. For s p e c i f i c i t y ,  l e t  u s  

l i m i t  ourselves  t o  t h e  case of e l a s t i c  spheres of c ross  sec t ion  0 and c i t e  

formulas f o r  t h e  c o l l i s i o n  i n t e g r a l  moments c c and c . c  : 

It is t r u e  

2 
i j  1 

In t eg ra t ion  over t h e  c o l l i s i o n  parameters f o r  random molecules 

which a r e  the  force  cen te r s  i s  done i n  an elementary (but  q u i t e  

exhausting) way, t h i s  being p a r t i c u l a r l y  t r u e  f o r  the  moments of the  fou r th  

and higher orders.  A r a t i o n a l  way of ca l cu la t ing  these  i n t e g r a l s  w a s  

proposed by M a x w e l l  and described i n  d e t a i l  i n  t h e  w o r k s  of Boltzmann 

E133 and Ikenberry and Truesdel l  [ 1 4 3 .  

In t eg ra t ion  of t h e  c o l l i s i o n  i n t e g r a l  moments, t y p i c a l  examples 

of which are i n t e g r a l s  (20 ) ,  is conducted without separat ion of va r i ab le s ,  

due t o  t h e  presence of t h e  r e l a t i v e  ve loc i ty .  In  t h e  case of Maxwellian 

or  pseudo-Maxwellian molecules, 

(J - r /g ;  d o  - l,/g 

t h e  separat ion of va r i ab le s  is performed, and i n t e g r a l s  a r e  reduced t o  t h e  

d i s t r i b u t i o n  func t ion  moments. S p e c i f i c a l l y ,  i n t e g r a l s  ( 2 0 )  acquire  

t h e  form: P 2 P  I . . - - - p . . ;  I . . . = - - -  
(21) ' I  IL 11 L J I  3 LL si * 



The formulas f o r  t he  de r iva t ives  of third-order  moments may be found i n  [9, 
51, while t h e  four th-  and f i f th -o rde r  moments can be found i n  [ l 5 ,  141. 

t h e  model of Maxwellian molecules s i g n i f i c a n t l y  s impl i f i e s  t h e  s i t u a t i o n .  

Thus, 

W e  do not a c t u a l l y  know how real molecules behave, o r  how v a l i d  the  model 

f o r  molecular i n t e r a c t i o n  is. Conclusions regarding t h e  c o l l i s i o n  c ross  

sec t ions  are genera l ly  drawn on the  bas i s  of t r a n s f e r  c o e f f i c i e n t  data .  The 

s impl i f i ca t ion  of t he  c o l l i s i o n  moment i n t e g r a l s  can formally be done by 

s e t t i n g  g = constant  (when 0 = cons tan t ) ,  not 0 - g , and s e l e c t i n g  the  con- 

s t a n t  i n  such a way t h a t  equat ion (21) is s a t i s f i e d .  Such a viewpoint is not 

without foundation. In  f ac t ,  a d i s t r i b u t i o n  func t ion  which d i f f e r s  l i t t l e  

from the  Maxwell d i s t r i b u t i o n  funct ion i n  the  first (and a very good) approxi- 

mation would have t h e  s a m e  formulas (211, independently of t he  molecular model 

se lec ted .  

-1 

It is thus poss ib le  t o  attempt approximation of t he  moments of the  

c o l l i s i o n  i n t e g r a l  by approximating the r e l a t i v e  v e l o c i t y  g. L e t  us assume 

approximately 

where g is some unknown value of the  r e l a t i v e  v e l o c i t y  modulus. The values 

of t h e  i n t e g r a l s ,  f o r  s m a l l  d i s t r i b u t i o n  func t ion  devia t ions  from the  Maxwellian 

make poss ib le  an accura te  s e l e c t i o n  of g from the  f u l f i l l m e n t  of t h e  condi t ion 0 
(21). H e r e  t h e  g quan t i ty  is found t o  be the  s a m e  f o r  both i n t e g r a l s  (21) :  

0 

0 

Since i n  the  general  case the  g value s e l e c t e d  i n  such a manner is approxi- 
0 

m a t e ,  one can use an expansion i n  the  g region f o r  g. Keeping i n  mind t h a t  t h e  0 
FF funct ion r ap id ly  decreases  with an increase  i n  the  arguments (and consequent- 

1 
l y  g ) ,  one can hope t o  ob ta in  a good asymptotic eva lua t ion  of t h e  i n t e g r a l  by 

l imi t ing  ourselves  t o  a l i n e a r  approximation f o r  r e l a t i v e  veloci ty .  Assuming 

t h a t  

L l O 3  

and s u b s t i t u t i n g  the  obtained expansion i n t o  the  formulas f o r  t he  c o l l i s i o n  
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integral moments, we obtain an expression for the latter through the distribu- 

tion function moments. Specifically, in the linear approximation the I 

Iijj 

ij' 
moments are represented in the form 

In the random model of molecules, when the collision cross section cr may 

depend on relative velocity, this requires utilization not of expansion (221, 

but of the corresponding expansion of the ag product in the CJ g region, 

where 
0 0  

P 
. ~ . n  o0 g o  2 const = 2 -. 

Here the model of molecular interaction determines the dependence of viscosity 

on temperature. 

6. The Problem of Isotropic ~ _ _ _  Relaxation in a Homogeneous Space 
.. - ~ 

The proposed method for approximating the Boltzmann equation does not 

apply to the differential part of the equation, only to the collision integral. 

Since in the collision integral the point coordinates in physical space play 

the role of parameters, the possibility and effectiveness of the proposed 

approximation method can be significantly clarified in the example of gas 

relaxation in a homogeneous space. 

In this and in subsequent sections, we present the results of the 

numerical solution of two problems of gas relaxation in a homogeneous 

space. In the first problem the distribution of molecules by velocities 

is assumed to be isotropic (the distribution function depends on the velocity 

J 



modulus), while i n  t h e  second case it id a x i a l l y  symmetric. The so lu t ion  

of t h e  first problem is compared with t h e  exact numerical so lu t ion  of 

V.  A. Rykov C161, while t h e  so lu t ion  of t h e  second problem is compared 

with t h e  so lu t ion  of F. G .  Cheremisin [17]. The c o l l i s i o n  frequency is 

assumed t o  be an equi l ibr ium frequency, i.e., it is ca lcu la ted  from t h e  
M a x w e l l  d i s t r i b u t i o n  funct ion.  The model f o r  t h e  molecules is e l a s t i c  

spheres of diameter d. 

Thus, t h e  problem is  solved with t h e  i n i t i a l  d a t a  f o r  t h e  equation 

H e r e  and i n  t h e  subsequent s ec t ion  a l l  q u a n t i t i e s  a r e  assumed t o  be 

dimensionless;  time is reduced t o  t h e  mean time between c o l l i s i o n s  t* ,  

molecular ve loc i ty  t o  c*,  d i s t r i b u t i o n  funct ion t o  F*, where 

The frequency N(O) f o r  s o l i d  spheres has t h e  form C181: 

Let us first consider  t h e  problem of i so t rop ic  re laxa t ion .  In t h i s  

case ,  i n  view of t h e  c o l l i s i o n  i n t e g r a l  s i m p l i f i c a t i o n s ,  i t  is r e l a t i v e l y  

easy t o  ob ta in  an accurate  numerical so lu t ion  [161. 

In view of t h e  d i s t r i b u t i o n  funct ion i s o t r o p i c i t y ,  a l l  odd moments a r e  

equal t o  zero. The F+ funct ion is se l ec t ed  i n  the  f o r m  

i .e.,  one u t i l i z e s  t h e  f o u r t h  approximation. For determining t h e  

unknown c o e f f i c i e n t s  CY, B ,  y ,  which are time dependent, according t o  (8) 

we have a system of l i n e a r  a lgebra ic  equations: 
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The conservation l a w s  r e q u i r e  t h a t  t h e  right-hand s i d e s  of t h e  first two /105 

equations be equal t o  zero. In  t h e  t h i r d  equation t h e  i n t e g r a l  is  reduced t o  a 

two-dimensional i n t e g r a l  : 
-?-- J (c ,4 - c4 )FF ,gdudch2 ,  
QXC7 

The c o e f f i c i e n t s  of t h e  l i n e a r  system are t i m e  independent, one- 

dimensional i n t e g r a l s .  

As t h e  i n i t i a l  d i s t r i b u t i o n  func t ion ,  a func t ion  w a s  s e l ec t ed  f o r  

which an exact s o l u t i o n  w a s  constructed [I61 : 

The c a l c u l a t i o n s  w e r e  c a r r i e d  out as fol lows:  I n  t h e  i n i t i a l  moment 

t h e  so lu t ion  of system ( 2 7 )  was found f o r  t he  assigned d i s t r i b u t i o n  func- 

t i o n .  

using ( 2 6 ) ,  which toge ther  with t h e  known func t ion  determined t h e  right-hand 

s i d e  of ( 2 4 ) .  The d i s t r i b u t i o n  funct ion a t  t i m e  t = 0.1 was found from t h e  

known der iva t ive  aF/at ,  by t h e  Euler method with 0.1 i n t e r v a l s .  Analogous 

ca lcu la t ions  were c a r r i e d  out f o r  a l l  o t h e r  moments of t i m e .  

From the obtained a, p,  and y values ,  t he  F+ funct ion was determined 

The i n t e g r a l s  w e r e  ca lcu la ted  by Simpson's r u l e ,  with 0.05 i n t e r v a l s  i n  

t h e  range 0 t o  5. Calculat ions w e r e  made on t h e  " s t r e l a "  e l e c t r o n i c  

d i g i t a l  computer. The r e s u l t s  of t h e  c a l c u l a t i o n s  are represented i n  t h e  

form of graphs i n  Figures  1, 2,  and 3 .  The s o l i d  curves a r e  f o r  t h e  

exact  s o l u t i o n ,  dashed curves f o r  t h e  s o l u t i o n  by t h e  proposed method with 

F+ i n  the  form (261, and dash-dot-dash curves represent  t h e  second approxima- 

t i o n  cy E 0 ,  only conservation laws a r e  f u l f i l l e d ;  see t h e  first two equations 

i n  system ( 2 7 ) l .  On t h e  same graph, sho r t  dashed curves show t h e  r e s u l t s  of 
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c a l c u l a t i o n s  by t h e  Krook model equation. Figure 1 rep resen t s  t h e  d i s t r i b u -  

t i o n  func t ion  a t  time t = 1, and a l s o  t h e  i n i t i a l  (t = O ) ,  and Maxwell func- 

t i o n s  (t = a). Figure 2 shows t h e  same func t ions  mul t ip l i ed  by c . The r e s u l t s  

of c a l c u l a t i o n s  show t h a t  t h e  behavior of t h e  d i s t r i b u t i o n  func t ion  from 

t h e  fou r th  approximation is very c l o s e  t o  t h e  exact so lu t ion .  

2 

- /I07 

Figure 1. Dis t r ibu t ion  fUncLion F (c )  f o r  t=l; --- second 
approximation; -- - f o u r t h  approximation; ----- Krook 
model ; - exact so lu t ion .  
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2 Figure 2 .  Function c F ( c )  for t=l.  



Figure 3 .  

--- seco:id - exact 

Changes of t h e  fourth-order moment with t ime; 

0 

approximation; - - -  fou r th  approximation; --- JSrook model; 
so lu t ion ;  00.0 Maxwellian molecule model. 

Figure 3 shows changes of t h e  first moment, which d i f f e r s  from t h e  
4 +  

constant  moment, t h e  fou r th  order  moment Qiikk=Jc F dc  

t h e  ord ina te  axis t h e  quant i ty  

with time; along 

6 (0) M, = J c (F - F ) d c .  
0 

w a s  p lo t ted .  The e r r o r  i n  determining t h e  considered fou r th  moment 

from t h e  fou r th  approximation does n o t  exceed 1% of t h e  exact  
'iikk 
value ( t h e  r e l axa t ion  model gives  a 7-8% e r r o r ) .  When t = 0 ,  the  r e l a t i v e  

e r r o r  i n  determining the  M 

e r r o r  exceeds 50%. 

i r l t e g r a l s  i s  8%. For t h e  r e l axa t ion  model t h i s  
4 
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For comparison t h e  same f i g u r e  (Figure 3 )  contains  p o i n t s  which represent  

t h e  va lues  corresponding t o  Maxwellian molecules f o r  g a s  of t h e  same viscos i ty .  

Attent ion is drawn t o  t h e  s i g n i f i c a n t  d i f f e r e n c e  between t h e  r e s u l t s  

of t h e  second and t h e  f o u r t h  approximations, and a l s o  t o  t h e  fact  t h a t  t h e  

r e s u l t s  of t h e  second approximaticn are somewhat poorer than from t h e  Krook 

model. 

The indicated d i f f e r e n c e  between t h e  approximations i s  explained by 

t h e  fact t h a t  i n  t h e  approximation, a key f a c t o r  is t h e  r e l a t i o n s h i p  

between nonzero c o l l i s i o n  i n t e g r a l  moments, s ince  t h e  conservation 

l a w s  i n  essence do not  ref lect  t h e  s p e c i f i c i t y  of t h e  Boltzmann c o l l i s i o n  

in t eg ra l .  In  f ac t ,  geometr ical ly ,  t h e  evolution of  t h e  d i s t r i b u t i o n  func t ion  

and its tendency towards t h e  equilibrium value i n d i c a t e s  a continuous deforma- 

t i o n  of t h e  t = 0 curve i n  Figure 1 t o  t = m. The conservation laws i n d i c a t e  

t h a t  t h e  deformation law must be such t h a t  t h e  area bounded by t h e  c F curve 

and t h e  absc issa  axis, a s  w e l l  as t h e  area bounded by t h e  absc issa  axis 

and t h e  c F curve (which i s  t h e  same a s  t h e  i t e r a t i o n  moment of t h e  first 

f i g u r e ) ,  must remain unchanged. The r a t e  of curve deformation 

i n  t h e  second approximation i s  independent of t h e  accurate  c o l l i s i o n  

operator ,  and only i n  t h e  f o u r t h  approximation is it taken i n t o  account 

i n  t h e  i n t e g r a l  sense. 

2 

4 

Thus, t h e  ra te  of approach of equilibrium w i l l  correspond i n  t h e  

moment sense t o  t h e  Boltzmann c o l l i s i o n  operator ,  i f  above t h e  conservation 

laws certairl  o the r  nonzero c o l l i s i o n  i n t e g r a l  moments a r e  a l s o  taken 

i n t o  account. This a l s o  explains  t h e  f a c t  t h a t  t he  Krook model 

i s  a b e t t e r  second approximation, s i n c e  by replacing t h e  c o l l i s i o n  

frequency by a constant  t h e  p r o p e r t i e s  of t he  Boltzmann co l l i s io r l  

i n t e g r a l  are taken i n t o  account more f u l l y  ( a l l  second-order moment 

r e l a t i o n s h i p s  a r e  s a t i s f i e d ;  see Section 3 ) .  

In  conclusion, w e  no te  t h a t  t h e  accepted c o l l i s i o n  frequency approxi- 

mation w a s  found t o  be q u i t e  s a t i s f a c t o r y .  Comparison o f  t h e  c o l l i s i o n  

frequency N determined from t h e  i n i t i a l  d i s t r i b u t i o n  func t ion ,  with t h e  

equilibrium value has  shown t h a t  m a x i m u m  deviat ion of N 

place  when c = 0 ,  and it does not  exceed 5%. Because t h e  Krook model with a 

constant  c o l l i s i o n  frequency gives r a t h e r  good r e s u l t s  f o r  t h e  re laxa t ion  

0' 
from N ( O )  takes 

0 
/109 
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problem, one would expect t h e  c o l l i s i o n  frequency e f f e c t  t o  be 

very s m a l l .  Nevertheless,  ca l cu la t ions  were c a r r i e d  out with t h e  accura te  

c o l l i s i o n  frequency. 

t h e  same as those c i t e d  above. 

The r e s u l t s  of ca lcu la t ions  w e r e  found t o  be p r a c t i c a l l y  

7. Nonisotropic - Relaxation of Boltzmann -. - - . G a s  .- . 

i n  Homogeneous Space 
- .  - - . - . 

The i s o t r o p i c  r e l exa t ion  problem is  not a c h a r a c t e r i s t i c  one 

i n  t h e  theory of r a r e f i e d  gases. Actually,  i n  t h e  stream of r a r e f i e d  g a s ,  

t h e  d i s t r i b u t i o n  func t ion  does not possess i so t ropy  i n  v e l o c i t i e s ,  and it 

can have an extremely complex form. Nevertheless,  i n  t h i s  s ec t ion  we a l s o  

consider t he  s impl i f i ed  c l a s s  of d i s t r i b u t i o n  func t ions  which r e l a x  t o  the  

Maxwell d i s t r i b u t i o n  funct ion.  Resul ts  a r e  given f o r  t h e  so lu t ion  of t h e  

Cauchy problem f o r  i n i t i a l  funct ions having a x i a l  symmetry i n  

ve loc i ty  space. The a x i a l  symmetry condi t ion s i g n i f i c a n t l y  s impl i f i e s  

t h e  ca l cu la t ions  and preserves  t h e  p r inc ipa l  c h a r a c t e r i s t i c s  of t h e  random 

d i s t r i b u t i o n  of molecular v e l o c i t i e s  ( i n t e r n a l  s t r e s s e s  and energy f luxes  

a r e  not equal t o  zero i n  t h i s  ca se ) .  

Numerical c a l c u l a t i o n s  w e r e  made f o r  t he  d i s t r i b u t i o n  func t ion ,  

which can be represented by a l i n e a r  combination o f  two M a x w e l l  func t ions  

with m a s s  v e l o c i t i e s  ( t h e  pseudo-shock problem [191): 

-$ 
here  u ,  v, and w are components of t he  molecular v e l o c i t y  vec tor  c. 

Constants al ,  a2, U1, U2, e l ,  8, are r e l a t e d  by t h e  condi t ions  of constant  

dens i ty  and temperature and t h e  absence of m a s s  ve loc i ty :  
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Conditions (29) lead t o  t h e  following r e l a t ionsh ips  f o r  al, a2, ul, u2, 
el’  Q2: 

The form of t h e  i n i t i a l  func t ion  permits easy ca l cu la t ion  of a l l  of 

t h e  necessary d i s t r i b u t i o n  func t ion  moments. In  p a r t i c u l a r  

If U =U i n  F then a =a 8 =e =8, i .e. ,  t h e  i n i t i a l  func t ion  i s  1 2  0’ 1 2 ’ 1 2  
symmetric wi.th respec t  t o  t h e  u = 0 p lane ,  thermal f l u x  2S1 is equal t o  zero ,  

and, f o r  t h e  stresses a t  t h e  i n i t i a l  moment, t h e  following equation holds:  

where p is gas pressure ;  pI1 is the  excess pressure  caused by devia t ion  from 

equilibrium. 

Equation ( 3 0 )  shows t h a t  i n  t h e  symmetrical case t h e  excess pressure  

cannot exceed t h e  g a s  p ressure  by more than a f a c t o r  of two (when 

8*, t h e  i n i t i a l  func t ion  becomes a 6-function with l imi t ing  va lues  U =U = 1 2  

The i n i t i a l  func t ion  i n  t h e  form (28) is  a l s o  convenient i n  t h a t  it 

permits ca l cu la t ion  of t h e  c o l l i s i o n  frequency 
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where N(O) is defined by formula (25). 

Figure 4 r ep resen t s  t h e  M a x w e l l  and t h e  i n i t i a l  (dashed curve) d i s t r i -  

bution func t ions  f o r  U 4 . 2 5 ;  U =2.75; 8 -1.79; 8,=S.75 and t h e  appropr ia te  

c o l l i s i o n  frequencies.  In s p i t e  of l a r g e  d i f f e rences  i n  t h e  d i s t r i b u t i o n  

func t ions ,  t h e  corresponding c o l l i s i o n  f requencies  are c lose .  Considering 

t h i s  f a c t  and t h e  fact  t h a t  t h e  c o l l i s i o n  frequency itself a f f e c t s  t h e  

so lu t ion  r e l a t i v e l y  l i t t l e ,  w e  can assume, as i n  Section 6 ,  t h a t  t h e  c o l l i s i o n  

frequency is defined by formula (25). 

- /111 1 2 1 

The r e l a x a t i o n  problem with an i n i t i a l  func t ion  i n  form (28) w a s  

solved f o r  t h e  approximating equation of t h e  incomplete t h i r d  approximation, 

i.e., f o r  equation (24) with F+ i n  t h e  form: 

In determining t h e  a, P ,  y, 6 ,  and E c o e f f i c i e n t s  when 

y = 1, u,  c 2 , l 4 2 ,  u c 2  

t h e  moment r e l a t i o n s h i p s ( 2 7 ) g i v e  a system of l i n e a r  a lgeb ra i c  equations 

with constant c o e f f i c i e n t s .  The right-hand s i d e s  of t hese  equations 

change with t i m e  and tend t o  zero i n  t h e  course o f  t h e  establishment of 

equilibrium. The c o l l i s i o n  i n t e g r a l  moments f o r  t h e  c o l l i s i o n  inva r i an t s  

are equal t o  zero. 

c o l l i s i o n  parameters and obta in  t h e  q u a n t i t i e s  i n  t h e  expression (20) w i t h  

an accuracy equivalent t o  t h e  magnitude of t h e  sca l ing  f a c t o r .  Axial 

symmetry allows t h e  number of quadratures t o  be decreased t o  four.  A s  

a r e s u l t  of t h e s e  t ransformat ions ,  t h e  following is obtained: 

2 For 6 ,  equal t o  u , uc2, one can i n t e g r a t e  over t h e  
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The c a l c u l a t i o n s  w e r e  conducted i n  t h e  same manner as w a s  used i n  solving 

t h e  i s o t r o p i c  re laxa t ion  problem. A l l  of t h e  i n t e g r a l s  w e r e  ca lcu la ted  by 

Simpson's r u l e  within t h e  range -5 < u < 5 ,  0 < V i  5 i n  0.25 increments. 

The s e l e c t e d  g r i d  f o r  u ,  V allowed varying t h e  problem parameters within 

broad l i m i t s  without l o s s  of accuracy. 

1112 

Calculat ions w e r e  made using complete moments of c o l l i s i o n  i n t e g r a l s  

(31) and a l i n e a r  approximation I I by t h e  method proposed 

i n  Sect ion 5 of t h i s  work, i.e., using (23).  
11' 1 j j  

The r e s u l t s  of t h e  c a l c u l a t i o n s  are represented i n  t h e  form of 

graphs i n  Figures 5-9. 
V = O o f t h e  d i s t r i b u t i o n  func t ion  with t i m e  f o r  t h e  symmetric case: 

Figure 5 represents  t h e  changes i n  t h e  p r o f i l e  

ca lcu la ted  for comparison with t h e  r e s u l t s  of F. G .  Cheremisin [ l7] .  The 

dashed curve corresponds t o  t h e  s o l u t i o n  obtained with t h e  Krook equat ion,  

and t h e  dashedcurvewith X ' S  corresponds t o  t h e  F. G .  Cheremisin so lu t ion .  

Comparison of t h e  r e s u l t s  of t h i s  work C171 shows t h a t  s i g n i f i c a n t  d i f fe rences  

i n  d i s t r i b u t i o n  funct ion behavior occur only i n  t h e  region of  s m a l l  

v e l o c i t i e s .  The a t tenuat ion  of p with t i m e  with an accuracy t o  t h e  

c a l c u l a t i o n  e r r o r s ,  a s  i n  C171, corresponds t o  the  Krook model ( o r  
11 
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t o  t h e  Maxwellian molecules),  i.e., 

P I  1 p 1  ( O ) e - O ’ * t .  

Figure 6 r ep resen t s  t h e  d i s t r i b u t i o n  funct ion behavior i n  the V = 0 

cross  sec t ion ;  t h i s  is t h e  same as f o r  t he  symmetric case, but  with s i g -  

n i f i c a n t l y  greater devia t ion  of t he  i n i t i a l  func t ion  from t h e  equi l ibr ium 

funct ion  

The addi t iona l  stress a t t enua te s  by e s s e n t i a l l y  t h e  same l a w  ( 3 2 ) .  

This c h a r a c t e r i s t i c  of t h e  symmetric case i s  explained by t h e  f a c t  

t h a t  t h e  l i n e a r  co r rec t ion  i n  qproximat ing  t h e  i n t e g r a l  by the  

method described i n  Sec t ion  5, which f o r  t h e  i n i t i a l  funct ion (2%) is 

ca lcu la ted  a n a l y t i c a l l y ,  is comparable t o  t h e  e r r o r  i n  Euler method 

ca l cu la t ions .  

Let us  note  t h a t  i n  t h e  symmetric case t h e  s o l u t i o n s  of t he  approxi- 

mating equations o f t h e  second and t h i r d  approximations coincide.  

(0 1 Figure 4 .  Dis t r ibu t ion  funct ions @ (--- i n i t i a l )  and F 
(ell ian) and t h e  corresponding c o l l i s i o n  frequencies  N 
and P;  V = 0 cross  sec t ion .  0 
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Figure 5. Changes in the distribution function (V = 0 )  with 
time ; -x- Cheremisin's solution; ---solution from the 

2 IJ  - u  - -  - J L , -  
3 

Krook equation ; 1 P .  ( 0 )  
I -  V d T 7  p 

Figure 6. Distribution function (V = 0 )  for the case U1 = U = 1; 2 
P I  io) - 4 - - -  P 3 ?  

I. 



Figure 7.  Dis t r ibu t ion  funct ion behavior (V = 0 )  i n  t h e  problem 
of nonisotropic  re laxa t ion  ( a s y m m e t r i c  ca se ) .  

The problem of symmetric pseudo-shock was considered e a r l i e r  [ 19 1. 
Some d i f fe rences  i n  t h e  q u a l i t a t i v e  behavior of t h e  d i s t r i b u t i o n  func t ion  

appeared, apparently r e s u l t i n g  from t h e  fact  t h a t  i n  [ l91  c a l c u l a t i o n s  w e r e  

made with i n s u f f i c i e n t  accuracy (densi ty  and temperature i n  t h e  t i m e  

i n t e r v a l  from 0 t o  1 d i f f e r e d  from t h e  p r e c i s e  values  by approximately 

10%). 

The case of asymmetric i n i t i a l  d i s t r i b u t i o n  funct ions is of  s i g n i f i c a n t l y  

g r e a t e r  i n t e r e s t .  Figures  7-9 represent  t h e  r e s u l t s  of c a l c u l a t i o n s  of t h e  

8 -1.79, 8 -2.75. H e r e  a t  t h e  i n i t i a l  moment: v a r i a t i o n s  U a . 2 5 ,  U =2.75, 2 1 2 

The i n i t i a l  func t ion ,  as i s  apparent,  d i f f e r s  s i g n i f i c a n t l y  from t h e  

equilibrium funct ion.  

The evolut ion of  t h e  d i s t r i b u t i o n  func t ion  is represented i n  Figure 7 
(V=O'cross sec t ion ) .  Attent ion is  drawn t o  t h e  fact  t h a t ,  i n  c o n t r a s t  t o  

t h e  above-mentioned symmetric case,  t h e  behavior of F does not  correspond 

t o  t h e  d i s t r i b u t i o n  funct ion behavior according t o  t h e  Krook equation. 

According to t h e  Krook model, t h e  d i s t r i b u t i o n  func t ion  f o r  each value 



of t h e  v e l o c i t y  relaxes independently of t h e  remaining v e l o c i t i e s ;  t h e  

obtained so lu t ion ,  however, i nd ica t e s  t h e  complex i n t e r a c t i o n  of p a r t i c l e s  

having d i f f e r e n t  v e l o c i t i e s .  

The a t tenuat ion  of t h e  excess pressure pll/p and thermal flux - 
S =  s / (2RTl3I2 is represented i n  Figures 8 and 9. 

pll/p and s 
a t tenuat ion  of s is slower than t h a t  obtained i n  t h e  b o o k  model (dash- 

dot-dash) . 

The a t tenuat ion  of 1 1 p  
is much faster than f o r  Maxwellian molecules (dashed curves) ;  1 

1 

A l l  of t h e  r e s u l t s  presented thus  f a r  w e r e  obtained without t h e  use 

of t h e  approximation f o r  t h e  c o l l i s i o n  i n t e g r a l  moments by t h e  method des- 

c r i b e d i n s e c t i o n  5 of t h i s  work. Computation t i m e  f o r  one v a r i a n t ,  using 

t h e  BESM-6 computer f o r  t i m e  i n t e r v a l s  of from zero t o  f o u r ,  was 

approximately 5.5 hours. The approximation of t h e  c o l l i s i o n  i n t e g r a l  

moments i n  t h e  l i n e a r  approximation reduces t h e  computation time of a s in-  

g le  var ian t  t o  for ty- f ive  seconds. Corresponding r e s u l t s  f o r  the  moments 

w e r e  p lo t t ed  as  po in ts  i n  Figures 8 and 9. For t h e  logari thmic de r iva t ives  

d ( l n  p l l ) /d t ,  d ( l n  Sl) /dt  a t  the  i n i t i a l  moment, t h e  exact values  are 

equal t o  -1.08 and -0.714 r e spec t ive ly ;  t h e  Maxwellian model gives  -4/5 
and -8/15, while t h e  l i n e a r  approximations give -1.16 and -0.75. 

- -  .. . . .. . .  _. . -. . ~.~ . 

0 f 2 3 t 

Figure 8. Attenuation of t h e  excess pressure p /p; 
--- Maxwell model; -proposed method; moo proposed method 
with t h e  approximation of t h e  c o l l i s i o n  i n t e g r a l  moments. 
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Figure 9 .  Attenuation of thermal f l ux ;  --- Maxwell model of 
molecules; -proposed method; method proposed with t h e  
approximation of c o l l i s i o n  i n t e g r a l  moments; -.-*- Krook model. 

Thus, t h e  approximation of c o l l i s i o n  i n t e g r a l  moments, a s  well 

as t h e  l i n e a r  approximation, i n su res  an acceptable accuracy and decreases 

t h e  computer t i m e  necessary s i g n i f i c a n t l y  ( i n  t h e  considered problem by 

a f a c t o r  of more than 400). 

Conclusions 

The methods developed i n  t h i s  work f o r  t h e  approximation of c o l l i s i o n  

i n t e g r a l s ,  based on s a t i s f y i n g  t h e  moment i n t e g r a l  r e l a t i o n s h i p s ,  choosing 

approximating formulas f o r  t h e  r e t u r n  c o l l i s i o n s  i n t e g r a l  and c o l l i s i o n  

frequency, and c o l l i s i o n  i n t e g r a l  approximating moments, reduced 

t h e  Boltzmann equation t o  a series of approximating equations. Each 

approximating equation has an approximate opera tor  f o r  r e t u r n  c o l l i s i o n s  

and c o l l i s i o n  frequency, which depends only on t h e  d i s t r i b u t i o n  

functionmoments, i.e., t h e  approximate c o l l i s i o n  opera tor  i n  t h i s  sense 

i s  analogous t o  Krook equation r e l axa t ion  opera tor .  

Any method f o r  numerical s o l u t i o n  of t h e  Boltzmann equation (including 

t h e  Monte Carlo methods) is a l s o  appl icable  t o  t h e  approximating equation. 

However, t h e  s p e c i f i c  s t ruc ture  of t h e  c o l l i s i o n  i n t e g r a l ,  which permits 
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the construction of the  numerical solution without retaining the  distribu- 

t i o n  function, should a l s o  be used i n  choosing the numerical methods. From 

t h i s  standpoint, the  d iscrete  v e l o c i t i e s  method is  the most promising. 
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l l l l l  

MODELS FOR THE INTERACTION OF RAREFIED GAS 
WITH A SURFACE 

A. A. Pyarnpuu 

In the course of the investigation and calculation of the flow ofarare- L119 

fied gas, for which the boundaries are in the form of solid surfaces, it 

is necessary to know the recoil velocity of the molecules from the surface. 

However, the calculation of the distribution function for recoil 

particles presents significant difficulties due to insufficient 

howledge of the 

knowledge of the surface properties themselves. Even in the case of 

isolated recoil of the gaseous atoms from a solid surface, the analytical 

expression for the distribution function of the recoiled particles may be 

written only for the smooth sphere model [l]; in the case of other 

interaction potentials at best an extremely complex expression can be 

derived for the momentum and energy exchange coefficients [21. 
into account the collective nature of the interaction, the determination 

of the total energy, momentum and other macroscopic properties for the 

recoil molecule is possible only by the numerical method. It should 

be noted, however, that the volume of calculations is so great, that it 

imposes limitations on the interaction model. 

recoil phenomenon and due to the lack of 

Taking 

In this work, various theoretical models for the interaction of 
gaseous atoms with solids at energies of - 10 eV are discussed. The 

surface is modeled by a one- and th.ree-dimensional aggregate of atoms with 

different initial conditions and lattice parameters. 

In calculating the accommodation coefficients, the direct inte- 

gration of the equations of motion of gaseous molecules and atoms 

in the crystal lattice of the solid is used. An analysis of the advantages 

and the drawbacks of the models, as well as the possibilities of the 

analytical solutions in a one-dimensional case, is given. The dependence of 

the energy, the normal and the tangential momenta accommodation coefficients 

on the collision parameters is obtained. 

1. Accommodation coefficients. The calculation method 

All theoretical works on the interaction of gas atoms with a surface 

L120 
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are genera l ly  devoted t o  the  ca l cu la t ion  of momentum and energy exchange 

coe f f i c i en t s  or t he  equivalent  accommodation coe f f i c i en t s .  

Knudsen [3]  w a s  t he  first t o  u t i l i z e  the  formula cy = T 

where T is the  gas  temperature,  T is the  sur face  temperature,  

T is the  temperature of t h e  r eco i l ed  g a s ,  which corresponds t o  the  quant i ty  

charac te r iz ing  the  energy t r a n s f e r  from the  g a s  t o  the sur face  of t h e  

s o l i d  - the  temperature accommodation coe f f i c i en t .  If one considers  a 

process i n  which each molecule c o l l i d e s  with t h e  sur face  only once, one can 

determine the  energy ( k i n e t i c  energy) accommodation coe f f i c i en t  and the  momen- 

tum accommodation c o e f f i c i e n t  from the  following formula 

- Tg/Tr - T [sic] 
r g '  

S g 

r 

-+ 
where the  subscr ip t  n r e f e r s  t o  the  normal component of the v vector ,  

and 7 r e f e r s  t o  the  t angen t i a l  vec tor  component. 

The f i r s t  at tempt t o  c a l c u l a t e  t he  accommodation coe f f i c i en t  a by 

classical mechanicalmethods, based on the  well-known proper t ies  of g a s  

atoms and a s o l i d  sur face  with t h e  use of t he  s implest  model of s o l i d  spheres 

w a s  made by Baule i4]. However, t h i s  model r a i s e s  some object ions 

s ince  the  presence of the  sur face  is i n  no way taken i n t o  account. In a 

s tudyby R. G. Barantsev [l],  the  i n t e r a c t i o n  of g a s  p a r t i c l e s  having an energy 

of 5 - 10 eV and a 

absence of an absorp t ion layerwas  considered f o r  the  case of pai red  i n t e r -  

act ions.  For a simple i s o l a t e d  r e c o i l ,  t h e  d i r ec t iona l  d i s t r i b u t i o n  

of the  r e f l e c t e d  p a r t i c l e s  was obtained f o r  the  case of dense packing 

of sur face  atoms. The energy and momentum exchange c o e f f i c i e n t s  were 

a l s o  calculated.  Apparently, one can obta in  a s u f f i c i e n t l y  c lose  descr ip t ion  

of t he  real i n t e r a c t i o n  i f  one considers  nonl inear  terms i n  t h e  expression 

f o r  t he  fo rces  of i n t e r a c t i o n  of both a g a s  p a r t i c l e  with the  sur face  

atoms i n  the  l a t t i c e  and among t h e  atoms within t h e  l a t t i c e .  A one- 

dimensional model w a s  used i n  [ 5 ,  6 ,  7 3 ,  where the  s o l i d  was approximated 

by a l i n e a r  chain of quas i - e l a s t i ca l ly  bound atoms, which a r e  i n i t i a l l y  

r e l a t i v e  m a s s  p = M/m < 1 , w i t h t h e  assumption of 
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immobile. The oncoming atom moves along the axis of the chain, so that 

the collision is frontal. Assuming that the force of interaction with the 

first atom in the chain is a known function of time, after some transforma- 

tions one can obtain a single resultant equation for the relative displace- 

ment of the first pair of colliding atoms instead of a system of equations for 

motion of the chain. Goodman [81 considered a three-dimensional lattice, for 
which he calculated the reaction to a force applied perpendicular to the lattice 

surface to a specific (initial) atom. The equations of motion for a three- 

dimensional infinite lattice were written analogously to a one-dimensional 

case and are solved using the Fourier transform. In the work [91, accommo- 
dation coefficients for argon molecules on a cold tungsten surface were cal- 

culated. In this problem, the initial gas molecule trajectory had a random 

direction relative to the surface. 

However, with the use of a three-dimensional model, an analytical 

approximate solution (not to mention an accurate solution) can be obtained 

only in exceptional cases. The significance of numerical calculations on an 

electronic digital computer increases due to the possibility of creating 

model interactions, which in principle would be satisfactory for taking many 

interaction parameters into account. For example, in [lo], a large volume 

of numerical calculations of the classical trajectory of gas particles having 

energies of 0.1 - 15 eV near the surface of a snlid crystalline body were 
performed. 

2. Choice of potential. - InteractLoy with -~ crystsl-F 

The potential function q ( r )  = a, r < 0 ;  cp(r) = 0, r > (J represents 

solid impermeable spheres of diameter 0. This model is frequently used in 

calculations due to its simplicity. However, it gives only a rough idea of 

the strong briefly acting repulsive forces, since it is well known that two 

molecules repel each other upon approach at sufficiently close distances, 

but attract each other when they are far removed. The Lennard-Jones 

potential [ 6  - 121 is a function which is frequently used for the intermole- 
cular potential energy 
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This function gives sufficiently simple and realistic representation 

of the interaction among spherical nonpolar molecules, and in further L122 

calculations we shall make use of this particular potential. The parameters 

cT and E, having dimensions If length and energy respectively, are constant; 

they characterize the chemical differences of the colliding particles. 

The 8 quantity is the r value at which v ( r )  = 0 ;  € is the maximum energy 

of attraction which is achieved when r = .via. 
In the case of paired interaction of gas molecules and solids, the 

interaction potential is expressed by a single function of the distance 

between these particles. 

three-dimensional models), the potential at a given point A near the 

surface consists of the potentials of interaction with all the lattice 

surface nodes, i.e., 

In the case of collective interaction (two- o r  

in thetwo- and three-dimensional models respectively. 

Here r is the distance to the target atom and p, q are the 

numbers of its neighbors. Without diminishing the generality, but only 

for simplifyingcomputations we shall consider in the future, the normal 

frontal collisions, and the expressions for potential ( P ( A )  will acquire 

the following form 

0 

r 2  - I  2 + ( p a )  ; r p , q .  2 = x 2 +  ( p 2  + 4 2 ) a 2 ;  x is normal with respect to the surface. 
P 

However, upon replacing v ( r )  by a potential which is 
close to the real potential ( for example, the Lennard-Jones 



potential) ( 6  - 12), it becomes difficult to compute analytically the sums 
in these expressions. Moreover, there is no need for this since it is 

sufficient to have the evaluation of the forces of interaction from the 

far-removed surface atoms. Referring all of the distances to the 

lattice spacing and assuming o to be constant in the Lennard-Jones potential 

and equal to a, function ~ ( r )  for this potential will be replaced by the 

p 2  + 4 2  + s 2 ;  function cp(r*) = l/r* r r 2  = p: + S 2 ;  r * 2  = 

s = x/a is the relative distance of a gas atom from the target, with 

the accuracy equivalent to the value of the constant coefficient. 

L123 
12 6 - l/r* , where 

P*4 

Thus, at a fixed point A ,  the potential c ~ ( A )  is a function only of p 

in the two-dimensional case and a function of two variables p, q in the 

three-dimensional case. Let us consider the first case. 
a0 

P' 
If we designate the partial sum of the series C Y(p) through S 

p = l  

then the remainder R = Y(p + 1) + 'Y(p + 2) + ... as a result of con- 
vergence of the series satisfies the following inequality 

P 

m 

where cp(r Y(p) and f(p) in the improper integral Jf(p)dp is a mono- 
P P 

tonically decreasing function of p, which acquires the values Y(l), Y(2), 
"(31, ... when p = 1, 2, 3, ... 

For the specific case of 2p neighbors surrounding the target atom, 

the summed potential is calculated at any fixed point near the surface. 

The inequality ( 3 )  allows evaluation of the error introduced by 
neglecting the effect of the surface atoms which are removed even 

further. The integrals in (3) for the Lennard-Jones potential are evaluated 
analytically. In the future only the second of these is needed 

- 63P 63P - +  P - 6 3P - 
480'S6(p2+S2)3 3 8 4 S 8 ( p 2 + 2 ) 2  256S10(p2+S2)  4S2(p2+S2)2t 



During t h e  i n t e r a c t i o n  wi th  t h e  su r face ,  theevaluat ion of t h e  second 

t e r m  i n  t h e  expressions f o r  t h e  p o t e n t i a l  funct ion (2)  is analogous 

t o  t h e  two-dimensional model (q = 0) ,  while t h e  last  t e r m  can be represented 

i n  t h e  following form 

In it t h e  eva lua t ion  of ( 3 )  is v a l i d  upon replacement of f ( p )  by S L124 
P 9 9  

If one desig- and assuming t h a t  t h e  i n t e r n a l  sum is ca lcu la ted  p rec i se ly .  

nates  t h e  remainder of t h e  inne r  series by R i n  an approximate 

computation of t h e  l a t te r ,  R then satisfies t h e  inequal i ty  
9 

cl 

A s  a r e s u l t  t h e  e r r o r  increases  and f o r  R t h e  upward evaluation 
P 

w i l l  a l ready be v a l i d  

With assigned p and q va lues ,  with p cons t an t ,  t h e  R value 
q 

is estimated. 

l i m i t s ,  w e  obtain t h e  second t e r m  i n  expression ( 4 ) .  After  ca lcu la t ing  

t h e  p a r t i a l  sum f o r  q ,  t h e  i n t e g r a l  i n  t h e  f i r s t  t e r m  is  computed by t h e  

ordinary method (it is a l s o  poss ib le  t o  exchange t h e  summation and t h e  

i n t e g r a t i o n ) .  

S imi la r ly  f o r  a l l  o ther  p values.  Summing these  upper 

Calculat ions w e r e  performed f o r  t h e  r e l a t i v e  e r r o r  AR i n  t h e  i n t e r -  

ac t ion  p o t e n t i a l  as a funct ion of a number of atoms neighboring t h e  

t a r g e t  atom which w e r e  taken i n t o  account. Some of t h e  evaluat ions are 

given i n  Table 1. In  t h e  three-dimensional model, t h e  r e l a t i v e  e r r o r  

is somewhat higher  than i n  t h e  two-dimensional model, and it is 

s e v e r a l  t i m e s  l a r g e r  f o r  a s m a l l  number of neighbors, however) t h e  e r r o r  

decreases with an increase i n  t h e  number of neighboring atoms so i n t ense ly ,  

t h a t  f o r  p r a c t i c a l  purposes a s u f f i c i e n t  accuracy is achieved when an i d e n t i -  



cal number of neighbors is taken i n t o  account i n  both t h e  two- and 

three-dimensional cases. 

TABLE 1. 

I - 1.0 I - 1.5 

10 I a.l.10 y jo .1 .104  0.1.10-' 0,2.10-' o.3.10-'lo,l.10-''o,1.10-1]o~1.10-l 
2o 1 o . . l . 1 o - 1 ~ , o o . ~ . 1 o - ~ u i o ~ . 1 o d ~ o , 5 . 1 o - h ~ o . 8 . 1 o ~ ~ 1 o . ~ . 1 o - ~ ~ o . 3 . 1 o - ~  03.10-s 

Comparing t h e  r e s u l t s  with t h e  evaluat ion of fo rces  from far-removed 

atoms on t h e  sur face  during i s o l a t i o n  of  t h e  zone of s t rong  i n t e r -  

a c t i o n s ,  w e  note  t h a t  t h e  r e s u l t s  coincide q u a l i t a t i v e l y ,  i . e . ,  t h e  

dominating effect  i n  t h e  c o l l i s i o n  process of g a s  atoms with t h e  w a l l  

r e s u l t s  only from t h e  i n t e r a c t i o n  of t h e  neares t  neighbors t o  t h e  t a r g e t  

atom, t h e  number of which depends pr imar i ly  on t h e  p o t e n t i a l  parameters and 

f o r  known p o t e n t i a l s  ( including t h e  Lennard-Jones f u n c t i o n ) ,  taking i n t o  ,&5 

account t h e  approximate values of t h e  parameters themselves, does ? # . I t  exceed 

two t o  three.  However, t he  zone of free motion depends pr imar i ly  on the  

v e l o c i t y  of t h e  oncoming g a s  molecules [Z]. 

3 .  System of determining parameters._- Formulation 
of t h e  problem 

On t h e  edge  of a s u r f a c e  (o r  a t  t h e  end of  a one-dimensional chain)  

l e t  us s e l e c t  an atom and c a l l  it t h e  i n i t i a l  atom. The coordiliate 

system (Figure 1) w i l l  be defined i n  such a way t h a t  i t s  o r i g i n  co- 

i nc ides  with t h e  equi l ibr ium p o s i t i o n  of t h e  i n i t i a l  atom, while t h e  a x i s  

X 

of t h e  chain) .  W e  s h a l l  assume t h a t  t h e  c r y s t a l  l a t t i ce  is of t h e  simple 

cubic type. The i n t e r a c t i o n s  between t h e  atoms i n  such a c r y s t a l  are 

described by a harmonic p o t e n t i a l  with t h e  f o r c e  constant  W ;  t h e  magnitude 

of t h e  i n t e r a c t i o n  fo rce  i s  proport ional  t o  t h e  r e l a t i v e  displacement of 

t h e  atoms. L e t  US a l s o  assume t h a t  t h e  i n i t i a l  atom can be  bound t o  

i t s  neares t  neighbors through a p o t e n t i a l  cp ( r ) ,  d i f f e r e n t  from t h e  harmonic 

po ten t i a l .  This ,  so t o  speak, s imulates  t h e  i n t e r a c t i o n  with t h e  adsorbed 

atom. The i n t e r a c t i o n  of t h e  oncoming p a r t i c l e  with t h e  i n i t i a l  atom, as 

w i l l  be d i r e c t e d  normal t o  t h e  sur face  ( o r  along t h e  a x i s  3 
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Figure 1, Interaction scheme: 

a- one-dimensional chain; 
b- three-dimensional crystal model. 

well ata with other surface layer atoms in the lattice is determined L126 

by a potential cp(r) in the form of (1) or by a harmonic potential with 

the force constant N.  

a parameter B = n /u; y = 8(1 + p)/p,  where b = M/m is the ratio between the 

masses of gas and wall atoms. 

meters and the ratio of the atomic masses, an individual interaction 
event is also characterized by the following parameters: initial 

macroscopic velocity of the gas atoms, determined by the vector V ,  whose 

spatial orientation is defined by the 0 anqle (with the normal) 

and @ (azimuth), the spatial position of the gas atom (r, 9, y )  at the 

initial time 7 = 2 w m  t = 3, displacement r 

u of the lattice atoms. The lattice spacing a and the distribution 

function f(U) f o r  the characteristic velocities of gas atoms are also sti- 

pulated. It is convenient to introduce into the initial conditions the 

parameter a', defined as the ratio of the depth of the potential curve 

T ( r )  to the bond energy in the lattice 1/2 Uo . 
particles will be characterized by the parameter I from the expression 

Mv = 216; all linear dimensions are expressed in terms of the lattice 

spacing, which in the case at hand can be taken as equal to 0. 

In the latter case, it is convenient to introduce 
0' 

0 

In addition to the potential para- 

-+ 

-+ 
and the velocity 

-+ P9S 

Pqs -+ 

2 The kinetic energy of gas 

2 
0 

The resulting system of equations describing the motion of the entire 

interacting set of particles may be written as follows: 



A f t e r  t he  in t roduct ion  of t he  abeve-mentioned dimensionless parameters,  

any i n t e r a c t i o n  model can be obtained i n  both three-  and i n  one- 

dimensional form. Here F is t h e  force  ac t ing  on the  l a t t i c e  atoms 

designated p ,  q ,  S. 
p ,q , s  

The value of t he  parameter 1 is determined by the  energy of the  on- 
3 coming atom and f o r  a ve loc i ty  6-10 km/sec is of t h e  order  of lo2 - 10 

when M -  10 g ,  E x 10 - 10 eV. On the  bas i s  of t he  fact  t h a t  the  
-23 -1 -2 

2 

-2 
bond energy 1/2 no 

of the  order  of 10 - The displacement of l a t t i c e  atoms a t  

t he  i n i t i a l  time may a t t a i n  values  from -0.1 t o  +0.1 and v e l o c i t i e s  which 

do not d i s rup t  t h e i n t a c t n e s s o f  t he  l a t t i c e  ( t h e  condi t ion of the  equa l i ty  

of p o t e n t i a l  energy of t he  l a t t i c e  bond and the  k i n e t i c  energy of 

t he  v ib ra t iona l  motion of an ind iv idua l  atom). The s t i p u l a t i o n  of the  i n i t i a l  

is of t he  order  of s eve ra l  e l ec t ron  v o l t s ,  cyo w i l l  be 

condi t ions i n  combination with the  system of equations (5)  completes for -  

mulation of the  problem. 

4 .  One-dimensional l a t t i c e  model. Analyt ical  and 
numerical so lu t ion  

In s p i t e  of the  apparent s impl i c i ty  and u n r e a l i t y  of the  one-dimensional 

i n t e r a c t i o n  model, it is t h i s  very model which made it poss ib le  t o  obtain 

the  f i r s t  r e s u l t s  both f o r  a n a l y t i c a l  and numerical so lu t ions .  

In references [5, 6 ,  71, c i t e d  above, t h e  one-dimensional model w a s  i nves t i -  

gated i n  considerable d e t a i l .  

an absence of thermal motion of t he  atoms i n  the  chain p r i o r  t o  the  

onset  of i n t e rac t ion .  

of t he  la t t ice  atoms i n t o  account i n  a one-dimensional case w a s  

noted i n  [ll]. The r e s u l t i n g  system of equations descr ibing the  

phenomenon w a s  transformed i n  the  usual  way i n t o  a f i r s t -deg ree  

system, a f t e r  which t h e  in t roduct ion  of a generat ing func t ion  of 

The only assumption which w a s  made w a s  

The p o s s i b i l i t y  of taking thermal o s c i l l a t i o n s  
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S 
t h e  form G ( p ,  7 )  = xs(7)p r e s u l t e d  i n  x ( 7 )  f o r  t h e  r e l a t i v e  disFlacement 1 

s>l - 
of t h e  oncoming gas atom and t h e  first atom i n  t h e  chain 

equation 

where J ( 7 )  is t h e  Ekssel func t ion  and x (0) are the  i n i t i a l  atom d i s -  

placements i n  t h e  l a t t i c e .  
S S 

In t h e  case of zero i n i t i a l  per turba t ions ,  w e  can apply t h e  Laplace 

transform t o  t h i s  equat ion and a l l  t he  ca lcu la t ions  can be performed 

ana ly t i ca l ly .  In  our case ,  f ind ing  t h e  reverse  transformation a n a l y t i c a l l y  

b ( l t . ' i L )  ~ * whereas when $ 5 t i *  i t  leads 
r . 1  

produces an e f f e c t  only when 
( I , , L ) ?  

f a r  more rap id ly  t o  t h e  numerical f inding of t h e  o r i g i n a l .  'thus t h e  o r i g i n a l  

is computed i n  a combined procedure; t h i s  means t h a t  when $ > B * ,  integrationL128 

is performed i n  a complex plane along the  known contour,  and when $ <,e* 
Y 

t h e  expansion c o e f f i c i e n t  ( 7 )  . v , ( - , ' ) l n < . o s $ !  = >: (:,.;in ( 2 v  + I ) $ ,  
v - 0  

is computed i n  t h e  form 

1. c, =;r uF,(cr); 

c,  t c,  = - 1.' 0 I;, (?)CT); 

Tt 

. . . . . . . . . . , , 
where F (a) is t h e  Laplace transform f o r  x ( 7 ) .  The v e l o c i t y  of t h e  on- 

coming p a r t i c l e  is then expressed through x ( 7 )  from the  r e l a t i o n s h i p  
1 1 

1 

while t h e  energy t r a n s f e r  t o  t h e  chain is expressed i n  an ordinary 

m a n n e r .  

On t h e  b a s i s  of c a l c u l a t i o n s ,  performed under t h e  assumption of 

constant  values of t h e  i n i t i a l  displacementsand v e l o c i t i e s  of l a t t i ce  atoms, 

c e r t a i n  conclusions can be drawn: 
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1) the  i n t e r a c t i o n  depends s t rong ly  on the  p and B parameters 

(with an increase i n  p t he  number of l a t t i ce  atoms p a r t i c i p a t i n g  

i n  a c o l l i s i o n  event increases ,  while an increase  i n  fl gives 

the  opposite effect) ;  i n  p r a c t i c e ,  o s c i l l a t i o n s  of l a t t i ce  atoms with 

number s = 10 no longer a f f e c t  t he  r e l a t i v e  displacement of a gas  atom 

from the  first atom i n  the  chain;  

2 )  a c h a r a c t e r i s t i c  of t he  i n t e r a c t i o n  of a g a s  atom with the  i n i t i a l l y  

o s c i l l a t i n g  la t t i ce  is the  presence of temporary capture  of t he  gas  >.tom 

with subsequent r e f l e c t i o n  of the  two - t h ree  o s c i l l a t i o n s  toge ther  with 

the  l a t t i c e ;  

3 )  accommodation c o e f f i c i e n t s ,  ca l cu la t ed  f o r  the  case when the  atom 

is re f l ec t ed  without capture ,  i.e., immediately after the  f i r s t  o s c i l l a t i o n ,  

have smaller values than i n  the  case of t he  s a m e  c o l l i s i o n  parameters but 

with an i n i t i a l l y  quiescent  l a t t i c e .  

Further  ca l cu la t ions  w e r e  made f o r  chains with a l t e r e d  i n i t i a l  

conditions.  It  w a s  assumed t h a t  displacements from the  equi l ibr ium pos i t i on  

and the  v e l o c i t i e s  of a l l  l a t t i c e  nodes a r e  random i n  magnitude and 

d i r e c t i o n ,  however, they a r e  within the  l i m i t s  of the  admissible values 

f o r  displacements not exceeding approximately 0.1 of t he  i n t e r -  

atomic d is tance  i n  the  l a t t i c e ,  while the  k i n e t i c  energy during the  

o s c i l l a t i o n s  of the  l a t t i c e  atom does not exceed the  bond energy. Then, 

averaging of t he  r e s u l t s  of ca l cu la t ions  w i t h  var ious i n i t i a l  

condi t ions f o r  a given i n t e r a c t i o n  energy y i e lds  the  mean 

accommodation c o e f f i c i e n t s  f o r  normal momentum and energy. The 

comparison of t he  obtained values of c o e f f i c i e n t s  with the ava i l ab le  r e s u l t s ,  

where the  averaging w a s  not conducted, show t h a t  the  e f f e c t  of the presence 

of s t a r t i n g  per turba t ions  is preserved independently of the  length of the  

chain,  while t he  exchange c o e f f i c i e n t s  a t  var ious s t a r t i n g  condi t ions a r e  

bas i ca l ly  c lose  t o  the  average values.  The length of t he  chain has an 

effect on the  exchange only a t  low energies  of i n t e rac t ion ,  while f o r  t he  

gas atom ve loc i ty  range of p r a c t i c a l  i n t e r e s t  one can l i m i t  oneself  with 

great accuracy by taking only f i v e  of s i x  atoms i n  the  l i n e a r  model i n t o  

account. It follows from the  ca l cu la t ions  t h a t  l i g h t  gas  p a r t i c l e s  are 

bas i ca l ly  s c a t t e r e d  with low accommodation, while during the  in t e rac t ion  

of heavy atoms the  c o e f f i c i e n t s  cy and cy are c lose  t o  u n i t y ,  s o  t h a t  a t  
n 

b 
b \ 
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low energies capture of a gas atom is possible. In the latter case, 

the gas atom may undergo oscillations near the surface for a quite 

long period of time or be captured immediately after the first oscillation. 

0,170 
0,334 
0,608 
0,910 
0,288 
0,580 
0,966 
0,899 
0,088 
0,691 

0,240 
0,535 
0,570 
0,590 
0,535 

0,052 

TABLE 2. 

0,310 
0,556 
0,846 
0,992 
0,493 
0,723 
0,999 
0,990 
0,165 
0,905 

0,422 
0,784 
0,983 
0,830 
0,785 

0,100 

I 

11 
1 
I 
1 
1 
1 
1 

10 
10 
10 
10 
10 
10 
10 
JG 
30 

P 

- .~ 

S = 6  I '  s =  1 0  

0,677 0,887 - 
0,273 0,472 - 
0,591 0,832 - 
0,926 0,305 - 
0,899 0,983 - 
0,084 0,181 4 
0,680 0,838 2 

1,000 1,000 7 

0,052 0,101! - 
0,%,16 0,431; - 
0,530 0,7735 - 
0,854 0,975 - 
0,537 0,7861 - 
0,592 0~8.371 .? 

I 

The results of the calculations of the energy and the normal 

momentum accommodation coefficients for modified initial conditions are 

shown in Table 2, while the dependence of the velocity of gas atoms with 

various interaction parameters in the course of collision are shown in 

Figures 2 and 3 .  
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Figure 2. Changes of the velocity of gas atom during 
collision with linear chain (number of 
atoms in chain S = 6): 

1 -  l , ,=o,l, 1 - 1 0 ,  a 3 = 0 , 1 ;  2 -  p = o , 3 ,  I = 10, a o = 0 , 1 ;  3 -  
l L =  0 , 9 ,  I = 10, a0 = o , o ~ ;  4 - p = 0 , 3 ,  I = 10, a 0 = o * O 1 ;  5 -  

p L = @ , l ,  1 = 10, no = 0 , 0 1  
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5. Numerical so lu t ion  f o r  the  models of i n t e rac t ion  
~ ~- ~~ 

w i t h  a three-dimensional c rys t a l .  Averaging of _ _ _  
t he  accommodation c o e f f i c i e n t s  _ _  - .  - 

In con t r a s t  t o  t he  one-dimensional model, t he  three-dimensional model 

of a s o l i d  is more complex when one considers  t he  problem of the in t e rac t ion  
between a gas and a surface.  

mathematically t h e  problem is more d i f f i c u l t ,  but a l s o  i n  the complexity of 

the  cons t ruc t ion  of an acceptable  model 

ac t ion  p o t e n t i a l s  with c lose  t o  r e a l  Droperties.  Therefore, 

the  purpose of t he  i n i t i a l  work i n  t h i s  area w a s  t o  ca l cu la t e  the  accommo- 

dat ion c o e f f i c i e n t s  as funct ions of i n t e rac t ion  parameters and t o  compare 

them with s i m i l a r  problems i n  a one-dimensional formulation [ l l ,  121. 

This is manifested not only i n  the  f a c t  t h a t  

f o r  t he  c r y s t a l  and the  i n t e r -  

Let us consider  t he  case when gas atoms undergo only f r o n t a l  

c o l l i s i o n s  with the  sur face  atoms, located a t  the  nodes of a cubic l a t t i c e .  

A,gas  atom i n t e r a c t s  e i t h e r  only with the  i n i t i a l  atom, o r  with a 

whole s e t  of sur face  atoms, the  number of which may be estimated 

by the  methods discussed i n  Sect ion 2. 

t he  f i r s t  p o s s i b i l i t y .  The fo rce  of i n t e r a c t i o n  of a l l  i n t e r n a l  atoms i n  

the  block depends on the  r e l a t i v e  displacement of atoms while the  angle of 

incidence of g a s  p a r t i c l e s  upon the  w a l l  is random. 

kt us  i n i t i a l l y  consider 

The dependence of the  accommodation c o e f f i c i e n t s  on the  nature  of 

forces  which bond the  i n i t i a l  atom i n  the  l a t t i c e  t o  the  neighboring atoms, 

was inves t iga ted  i n  the  following va r i an t s  of t h i s  problem: 

a )  c o l l i s i o n  of g a s  atoms with the  i n i t i a l  atom, when e l a s t i a  forces  

with the  constant  u ,  i d e n t i c a l  i n  a l l  d i r e c t i o n s ,  a r e  operat ive between 

the  atoms of the  w a l l  from the d i r ec t ion  of the c l o s e s t  neighbors; 

b )  t he  c o l l i s i o n  of a g a s  atom with the  i n i t i a l  atom, which is bound 

t o  the  neares t  neighbors by the  p o t e n t i a l  ( l ) ,  while 

the  bond of the  remaining w a l l  atoms is e l a s t i c .  

The i n f i n i t e  system of equations (5 )  f o r  both va r i an t s  does not 

change i ts  form and the  only d i f fe rence  is i n  the  right-hand s i d e s  of the  

equation. In the  s o l u t i o n  one_ can devise some scheme s i m i l a r  t o  the  

successive approximations scheme, based on the  successive evaluat ion of 
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t he  effect exerted on the  binary i n t e r a c t i o n  by f u r t h e r  and f u r t h e r  removed 

neighbors. The comparison of these  “approximationsf1 allows t h e  

evaluat ion of both t h e  q u a l i t a t i v e  and q u a n t i t a t i v e  effects 

of neighboring atoms of t h e  corresponding order  (with respec t  t o  t h e  

d is tance  away from t h e  i n i t i a l  la t t ice  atom) on the  l a t t i ce  

r eac t ion  and consequently, on the  magnitude of t h e  accommodation co- 

eff i c i en t s .  

L132 

The system of equations is reduced t o  a f i r s t - o r d e r  syst.em of 

dimensionless form and can be solved numerically. Extensive quan t i t a t ive  

da ta  w e r e  obtained from which one can draw the  following bas ic  qua l i -  

t a t i v e  conclusions : 

1) i n  the  case  of an e l a s t i c  bond of the  i n i t i a l  l a t t i ce  atom f o r  l i g h t  

p a r t i c l e s  ( p = O . l ) ,  t he  energy accommodation c o e f f i c i e n t  i n  the  case of 

normal in t e rac t ion  depends very l i t t l e  on the  energy of oncoming 

p a r t i c l e s ;  on the  o the r  hand, i f  the  t r a j e c t o r y  s lopes ,  the  depen- 

dence of cy on the  i n i t i a l  energy w i l l  be more c l e a r l y  expressed; t he  

l e s s e r  the s lope 8 ,  the  g rea t e r  are the  energy lo s ses ;  

2 )  i n  the  case of average p values ( 4 . 5 ) ,  t he  dependence on 0 a t  

high energies  is s m a l l e r  than f o r  t he  case of average energy; 

3 )  the  d i f fe rence  i n  “approximations“ is s i g n i f i c a n t  only a t  low 

energ ies ,  while i n  the  case of averaae  and high e n e m i e s .  t h e  

accommodatior c o e f f i c i e n t  values a r e  c lose  (wi th in  5%) ; 

t h i s  is possibly a consequence of t he  postulated l a t t i c e  isotropy 

and the  increase i n  i ts  r i g i d i t y  as a r e s u l t  of t he  en t ry  of a la rge  

number of atoms i n t o  motion; 

4 )  the  in t e rac t ion  durat ion i n  a l l  cases is inverse ly  dependent on 

the  i n i t i a l  energy of t he  co l l i d ing  p a r t i c l e  and increases  somewhat f o r  

s loping t r a j e c t o r i e s  i n  comparison with normal t r a j e c t o r i e s  (by 3 % ) ;  

5) a s i g n i f i c a n t  dependence of energy and momentum exchange on 

the  nature  of interatomic forces  within the  la t t ice  w a s  discovered. 

Even within the  framework of the  head-on c o l l i s i o n ,  the  proposed 

scheme f o r  successive ca l cu la t ions  during the i n t e r a c t i o n  of more d i s t a n t  

atoms within the  l a t t i c e  allows inves t iga t ion  of the  c o l l e c t i v e  nature  

of in te rac t ions .  The obtained dependence of ve loc i ty  of t he  oncoming 
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p a r t i c l e  on t i m e  is very s i m i l a r  t o  t h e  corresponding dependence f o r  binary 

c o l l i s i o n s .  The dura t ion  of t h e  i n t e r a c t i o n s  is p r a c t i c a l l y  unchanged, but 

t h e  energy losses  increase somewhat. For i n s t ance ,  t h e  increase f o r  p = 0.5 

is 18% when 1 = 10, 2.2% when 1 = 100 and 0.8% when I = 1000 i n  comparison 

with t h e  binary i n t e r a c t i o n s  under t h e  s a m e  conditions.  

Study of f r o n t a l  c o l l i s i o n s  gives a q u a l i t a t i v e  p i c t u r e  of t h e  gas 

c r y s t a l  i n t e r a c t i o n  and allows c a l c u l a t i o n  of t h e  accommodation c o e f f i c i e n t  

only f u r  f i x e d  t r a j e c t o r i e s .  Quant i ta t ively more o r  less r e l i a b l e  values of 

t hese  c o e f f i c i e n t s  (assuming t h a t  t h e  model and i n t e r a c t i o n  parameters are 

s u f f i c i e n t l y  c l o s e  t o  the  real  ones) a r e  some average c h a r a c t e r i s t i c s  f o r  a l l  

t r a j e c t o r i e s ,  which c ross  an elementary ce l l  a t  t h e  sur face  of monocrystal. 

A s  before,  t h e  c o l l e c t i v e  i n t e r a c t i o n  is manifested i n  t h e  f a c t  t h a t  t h e  

c o l l i s i o n  of an ind iv idua l  g a s  atom occurs with t h e  whole block of gas atoms. 

One would expect t h a t  t h e  t r a n s f e r  of momentum and energy of a gas 

p a r t i c l e  t o  a c r y s t a l  i n  t h e  case of Eonfrontal c o l l i s i o n  w i l l  depend on t h e  

i n i t i a l  l a t t i c e  s t a t e  t o  a l a r g e r  ex ten t  than i n  t h e  case of f r o n t a l  impacts. 

For example, a s  a r e s u l t  of thermal o s c i l l a t i o n  of su r face  atoms, more pre- 

c i s e l y ,  a s  a r e s u l t  of t h e i r  displacement from equi l ibr ium p o s i t i o n s ,  t he  

pene t ra t ion  of a g a s  atom i n t o  t h e  c r y s t a l  can be made e a s i e r .  Henceforth, 

it is assumed t h a t  t h e  atoms of s o l i d s  a t  t h e  i n i t i a l  moment have nonzero 

v e l o c i t i e s  and displacements. The assumption t h a t  flow around t h e  body occurs 

as a monoenergetic flow of r a r e f i e l d  g a s  is q u i t e  argumentative f o r  t he  con- 

sidered i n t e r a c t i o n  ene rg ie s ;  however, one cannot s t a t e  a p r i o r i  t h a t  t h e  

accommodation c o e f f i c i e n t  is independent of t he  energy d i s t r i b u t i o n  of t h e  

oncoming p a r t i c l e s .  In  order  t o  f i n a l i z e  formulation of t h e  problem, it is 

necessary t o  take i n t o  account t h e  d i s t r i t m t i o n  of c h a r a c t e r i s t i c  v e l o c i t i e s  

i n  t h e  oncoming s t r e a m .  

Since it is s u f f i c i e n t  t o  take i n t o  account only those g a s  atoms 

which i n  t h e  i n i t i a l  moment i n t e r a c t  with an elementary c r y s t a l  c e l l ,  i n  

order  t o  obtain averaged accommodation c o e f f i c i e n t s ,  t h e  i n i t i a l  condi t ions 

can be t e s t e d  on some cont ro l  surface.  This su r face  is subdivided i n t o  
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ce l l s ,  t he  dimensions of which are determined by the  magnitude of force  of 

i n t e r a c t i o n  on an ind iv idua l  g a s  atom from t h e  d i r e c t i o n  of t he  block of 

l a t t i c e  atoms near t he  su r face  ta rge t  point .  The dimensions of t he  

block of atoms of t he  s o l i d  w i l l  depend on the  required ca l cu la t ion  and 

the  computer c a p a b i l i t i e s .  In accordance with the  e s t i -  

m a t e s  made i n  Sec t ion  2 ,  i n  t he  ca l cu la t ion  a 3 x 3 ~ 4  block w a s  used i n  which 

each atom i n t e r a c t s  only with its neares t  neighbor. The wr i t ing  of the  

system of equations and i n i t i a l  condi t ions can now be performed q u i t e  

readi ly .  

The ca l cu la t ions  of the energy t angen t i a l  momentum and normal momentum 

accommodation coe f f i c i en t s  are conducted on the  bas i s  of t he  t r a j e c t o r i e s  

f o r  the case of assigned macrovelocit ies of t he  g a s  atoms of a given m a s s .  

The i n t e r a c t i o n  begins (7 = 0)  a f t e r  the passage of g a s  atoms 

through the  con t ro l  su r f ace  a t  a r e l a t i v e  d is tance  of two from 

the body surface.  The d i s t r i b u t i o n  of the  pro jec t ions  of t a r g e t  

po in ts  i n s ide  the  c e l l  is assumed t o  be uniform, while the  s p e c i f i c  target  

point  is defined by the  8 and angles.  The accommodation c o e f f i c i e n t s  f o r  

t he  t r a j e c t o r y  i n  the  case of a f ixed  i n i t i a l  pos i t i on  of t he  gas atoms are 

obtained by averaging the  v e l o c i t i e s  of t h i s  ato-n, which have a d i s t r i b u t i o n  i n  

the  form of a Maxwellian funct ion 
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The macrovelocity v ,  a t  the  i n i t i a l  time is assigned 

through the 1 parameters by the formula / lao/k. 

The number of t r a j e c t o r i e s  which penet ra te  a given c e l l  is l imi ted  

through the  use of t he  8 angle and the  condi t ion t an  8 € 3/4, 0 5 '? 5 2rr. 

After  averaging a l l  poss ib le  t r a j e c t o r i e s  ( o r  t a r g e t  po in t s )  

accommodation coe f f i c i en t s  a r e  obtained which cha rac t e r i ze  energy and 

momentum exchange between the  s o l i d  and the  beam of g a s  atoms with the  

s t i p u l a t e d  macroscopic veloci ty .  

- 

0 A change i n  the  parameters p,, 6y , 1, 8 ,  @ does not change the  compu- 

t a t i o n  scheme, while a comparison of the  numerical values of the obtained 
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coe f f i c i en t  CY, cyT,  cyn e s tab l i shed  the  dependence of i n t e rac t ion  on these  

parameters. The average accommodation coe f f i c i en t  values f o r  t ra-  

j e c t o r i e s  a r e  ca l cu la t ed  from 125 p o i n t s ,  and the  number of a l l  

possible  t r a j e c t o r i e s  i n  the c e l l  depends on the  parameters of the  given 

v a r i a n t ,  as  many as 50-60. 

In ca l cu la t ions ,  the  following values  of the  parameters were used: 
0 

p = 0.1 - 0.3; cy = 0.01; t = 10 - 100; 8 = 0" - 7 0 " ;  @ = 0" - 360"; 
v = 8 /2kT/M. Limiting the  choice of the  @ values only i n  the  first 

quadrant can be j u s t i f i e d  only for not very large values of t he  8 angle (up t o  

30" - 35"). In t h i s  case ,  as cont ro l  computations have shown, the  i n t e r -  

ac t ion  scheme possesses almost c e n t r a l  symmetry. For values 8 > 35", the  

accommodation c o e f f i c i e n t s  exh ib i t  a s t rong  dependence on the azimuthal 

angle @. 
respec t ive ly  within the  l i m i t s  of one quadrant f o r  a f ixed  

value 9 = 3 5 " .  Curves 1 and 2 were constructed f o r  the values c~ = 0.1, 

and curves 3 and 4 f o r  the value c~ = 0.3. The values of parameter 1 a r e  

a l s o  l imi t ing ,  1 = 10 for curves 1 and 3 ,  and 1 = 100 f o r  curves 2 and 4. 
Let us note t h a t  t he  dependence of the accommodation coe f f i c i en t  on the  

i n i t i a l  energy is not the  Same d i f f e r e n t  values of the mass r a t i o  p. 

For example, while f o r  ~1 = 0.1 with an increase i n  the  i n i t i a l  energy, t he  

energy accommodation c o e f f i c i e n t  decreases ,  f o r  p = 0.3 the  dependence on 

the  o r i en ta t ion  of t he  i n i t i a l  vector  v and general ly  f o r  almost a l l  @ and 8 

values the c o e f f i c i e n t  cy increases  with an increase i n  the  parameter 1. The 

cont ro l  ca l cu la t ions  give s i m i l a r  dependences f o r  c~ > 0.3.  The c o e f f i c i e n t s  

cyT and CY a r e  more complexly dependent on 1 and p ,  as can be seen 

i n  the s p e c i f i c  case shown i n  Figure 4. The decrease i n  the  c o e f f i c i e n t s  Q 

and CY wi th  an increase  i n  the  8 angle is q u i t e  sharp;  when 8 

changes from 0" t o  70" the  decrease i n  the  magnitude of the c o e f f i c i e n t s  

is approximately one order  of magnitude (Figure 5). However, t he  computed 

cy, cyT and Q 

-. 

Figure 4 shows the dependence of the  coe f f i c i en t s  6y: aT, cyn on @ 

+ 

n 

n 

values f o r  la rge  8 values must be viewed with grea t  n 
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caut ion s ince  with an increase i n  8 ,  the  computation e r r o r  a l s o  increases .  

Thus, t he  q u a l i t a t i v e  p i c t u r e  of the  ca lcu la ted  changes of energy, 

t angen t i a l  momentum and normal momentum accommodation c o e f f i c i e n t s ,  taking 
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Figure 4. Dependence of accommodation 
coefficients on the orientation of the 
initial velocity vector (0  = 3 5 " ;  
m = oo - 9 0 0 ) :  

0 - 5.(t$; 6 - u.&b); G - i , 7 ( i P ) ;  

I -  j L . ; O , l ,  I = 10; 2 -  I L =  

= 0 , 1 ,  I = 100; 3 -- I L =  0,3 ,  
1 = 10; 4 - I L - - E  0 , 3 ,  I = 100 

Figure 5. Dependence of the accom- 
modation coefficient on the orienta- 
tion of the initial velocity vector 
( e  = 0 0  - 700 ;  m = 0 0 ) :  

0 -  z(0;; 6 -  U . - ( g ) ;  6 -  1,) (9); 
I - ,., = 0;1, 1 = 10: 
= 0,1, I -< 100; 

2 - / L  = 

3 - 11 = 0 ,  3 ,  
1 = 10 f - I L  =- \),.j, i = 100 

into account the collective nature of the interaction 
the target points, differs somewhat from the similar picture for 

a collective interaction, but in the case of an individual trajectory 

of a gas atom [12]. However, for small 8 values, the average 
accommodation coefficient values even quantitatively are closer to the  

corresponding values in the case of paired interactions at the same 

potential than the coefficients obtained in [lZ]. With the indi- 

cated interaction parameters, the average interaction time is 

practically independent of the selected combination of parameters. In 

addition, accommodation coefficients calculated for the individual tra- 

and averaging for L136 
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j e c t o r i e s  do not  have a large s c a t t e r  caused by the  presence of t h e  charac te r -  

i s t i c  ve loc i ty  d i s t r i b u t i o n  of incident  molecules, as one would expect i n  t h e  

case of v e l o c i t i e s  of t h e  order  of t he  first cosmic ve loc i ty .  L e t  us  no te ,  

however, t h a t  with an increase  i n  t h e  8 angle ,  t h i s  dependence becomes s i g n i -  

f i c a n t  and apparent ly  f o r  s u f f i c i e n t l y  la rge  s lopes  of t h e  inc ident  beam 

(0  2 70") t he  accommodation c o e f f i c i e n t  cor rec t ion  w i l l  be comparable t o  t h e  

magnitude of t he  c o e f f i c i e n t s  themselves. 

6 .  Some Additional Remarks. Possible  
Improvement .. - i n  .- theAccuracy  ~ ~~ of the  Resul ts  

The t h e o r e t i c a l  i n t e r a c t i o n  models which w e r e  proposed and considered above f137 
are obtained by t h e  varying following p r inc ipa l  p rope r t i e s  of s o l i d s :  1) 

dimensional i ty  of t he  block of w a l l  atoms; 2 )  dimensions of t h i s  block; 3 )  

i n i t i a l  s ta te  and the  form of interatomic bond wi th in  the  l a t t i c e  and a l s o  the  

p rope r t i e s  of the g a s  molecules: 1) form of the  ve loc i ty  d i s t r i b u t i o n  func t ion;  

2 )  p o s s i b i l i t y  of nonfrontal  c o l l i s i o n s ;  3 )  type of t he  i n t e r a c t i o n  p o t e n t i a l  

between g a s  and s o l i d  atoms. In  comparing the  various models it appears a t  f i rs t  

glance t h a t  t h e  one-dimensional i n t e r a c t i o n  models are weaker than o t h e r s ,  a t  

least u n t i l  t he re  are s u f f i c i e n t  experimental  da ta  which would enable some 

r e h a b i l i t a t i o n  of these  models. However, desp i t e  the  a r t i f i c i a l  na ture  of t he  

one-dimensional i n t e r a c t i o n  model, a comparison of t he  ca l cu la t ion  r e s u l t s  with 

three-dimensional models shows t h a t  the  p r inc ipa l  q u a l i t a t i v e  dependence of t h e  

energy and momentum exchange c o e f f i c i e n t s  on the  i n i t i a l  s t a t e ,  t he  type of t he  

interatomic bonds wi th in  the l a t t i ce  of the  s o l i d  and the  type of the  i n t e r -  

ac t ion  p o t e n t i a l  between g a s  atoms and the w a l l  f o r  these  models are very close.  

The advantage of t he  one-dimensional problem is the s impl i c i ty  of formulation 

and ca lcu la t ion .  It is understood t h a t  everything s a i d  above refers t o  f ron ta l  

c o l l i s i o n s  normal t o  the  c o l l i s i o n  surface.  Therefore,  i n  those problems where 

var ious angles of incidence of t he  g a s  molecules are considered and nonfrontal  

c o l l i s i o n s  are allowed, it is necessary t o  take i n t o  account t h e  three-  

dimensional nature  of t h e  c r y s t a l  wi th  which the  i n t e r a c t i o n  takes  place.  
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A study of ind iv idua l  t r a j e c t o r i e s  is s u f f i c i e n t  f o r  determining t h e  

q u a l i t a t i v e  p i c t u r e  of t he  i n t e r a c t i o n ,  however, it is the  q u a n t i t a t i v e  

r e s u l t s  which can be obtained by averaging such parameters as ta rge t  poin ts  

and c h a r a c t e r i s t i c  v e l o c i t i e s  of gas  p a r t i c l e s  which are of i n t e r e s t .  The 

f i r s t  of these  parameters f o r  the  accommodation c o e f f i c i e n t  w a s  averaged i n  

[l3]. A block of atoms of s o l i d  w a s  considered which contained 59 atoms, 

with normal c r y s t a l  s t r u c t u r e  of various bodies and it w a s  assumed t h a t  t he  

thermal o s c i l l a t i o n s  of l a t t i c e  atoms can be neglected.  The dependence of t he  

averaged energy accommodation c o e f f i c i e n t  cy on the  energy of the  inc ident  

p a r t i c l e s  1 ,  on the  form of the  p o t e n t i a l  of i n t e r a c t i o n ,  and a l s o  i n  a s p e c i a l  

case on the  angle of incidence 8 a t  values up t o  45" w a s  obtained. The ca l -  

cu la t ion  scheme presented i n  Sect ion 5 f o r  three-dimensional problems allows 

somewhat l a r g e r  value of t he  8 angle ,  and a l s o  the  p o s s i b i l i t y  of taking i n t o  

account t he  c h a r a c t e r i s t i c  ve loc i ty  d i s t r i b u t i o n  f o r  g a s  molecules, s o  t h a t  

the  computation of t he  averaged values of t he  accommodation c o e f f i c i e n t s  no 

longer presents  any g rea t  d i f f i c u l t i e s ,  regard less  of t he  choice of the  i n t e r -  

ac t ion  parameters ( including the type of the  p o t e n t i a l  and the  c r y s t a l  

l a t t i c e ) .  Only f o r  the  la rge  angles of incidence should the  above-presented 

ca l cu la t ion  scheme be somewhat a l t e r e d  i n  form. 
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Considering the  l a rge  volume of ca l cu la t ions  which must be performed f o r  

each set of parameters,  and a l s o  the s t rong  dependence of the  c o e f f i c i e n t s  cy, 

' T '  

i s t i c  v e l o c i t i e s  of gas atoms, it appears f e a s i b l e  t o  average the  c h a r a c t e r i s t i c  

v e l o c i t i e s  only f o r  la rge  8 angles.  The complete q u a l i t a t i v e  (and a l s o  

q u a n t i t a t i v e )  p i c t u r e  of t he  in t e rac t ion  i n  descr ibing the  phenomenon a t  the  

l e v e l  of accommodation c o e f f i c i e n t s  may be determined only a f t e r  de t a i l ed  

ca l cu la t ions  by the  above-indicated scheme f o r  t he  most complete poss ib le  

s e l e c t i o n  of t he  i n t e r a c t i o n  parameters,  followed by subsequent comparison 

of t he  r e s u l t s  with the  experimental da ta ;  t h i s  is f e a s i b l e  using modern 

computers. 

on the  t a r g e t  po in ts  i n  comparison with the  dependence on the  charac te r -  

In the  above-considered methods f o r  modeling the  i n t e r a c t i o n  of a r a r e f i e d  

g a s  and a s o l i d  su r face ,  it w a s  assumed t h a t  the  sur face  is c lean ,  %.e., 

t he re  are no adsorbed atoms. It is t r u e ,  however, i n  the  Sect ion 5 a poss ib le  

va r i an t  of t he  i n t e r a c t i o n  w a s  considered i n  which the  bond of t he  terminal  
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atom with i t s  neighbors is formed by t h e  s a m e  p o t e n t i a l  a s  t h e  i n t e r a c t i o n  

of a g a s  atom and w a l l  atoms. Assuming t h a t  t h e  m a s s  r a t i o  of g a s  atoms and 

t h e  i n i t i a l  atoms (M/mo) is equal t o  u n i t y ,  it is poss ib le  t o  s imulate  t o  some 

ex ten t  t h e  i n t e r a c t i o n  with t h e  adsorbed atoms ( o r  even with minor modifications 

of the  scheme, with t h e  adsorbed l aye r ) .  However, t h i s  scheme is too  idea l i zed ,  

s i n c e  t h e  r e a l  s t r u c t u r e  and the  fo rces  of i n t e r a c t i o n  with t h e  adsorbed 

l aye r  are not  taken i n t o  account. Apparently, i n  addi t ion  t o  improvement i n  

t h e  scheme of i n t e r a c t i o n  with t h e  adsorpt ion l a y e r ,  it is necessary t o  de te r -  

mine t h e  i n t e r a c t i o n  p o t e n t i a l s  more accu ra t e ly ,  which u n t i l  now w e r e  s e l e c t e d  

f o r  t h e o r e t i c a l  models e i t h e r  i n t u i t i v e l y ,  making mathematical convenience 

one of t h e  primary c r i t e r i a ,  o r  based on nonrigorous foundations. 

The second assumption which was made f o r  t he  i n t e r a c t i o n  models, is t h a t  

su r f ace  roughness is absent.  In t h e  l i t e r a t u r e  t h e r e  are a number of works 

devoted t o  taking sur face  roughness i n t o  account i n  i n t e r a c t i o n  problems; 

however, i n  t hese  works t h e  attempt is made t o  e i t h e r  construct  a rough su r face ,  

o r  t h e  i n t e r a c t i o n  with t h i s  rough sur face  is considered with s t i p u l a t e d  values 

of t h e  accommodation c o e f f i c i e n t s .  This complex problem s t i l l  is unsolved. 

Let u s  note t h a t  taking t h e  surface roughness i n t o  account i n  t h e  t h e o r e t i c a l  

computations of momentum and energy exchange c o e f f i c i e n t s  is t h e  most important 

refinement i n  t h e  problem of i n t e r a c t i o n  of a r a r e f i e d  g a s  with t h e  sur face  of 

streamlined bodies. However, t h e  f i n a l  choice of t h e o r e t i c a l  models can be 

made only when t h e  p o s s i b i l i t y  of t e s t i n g  a t  l e a s t  some of t h e  assumptions 

w i l l  become possible  i n  a r e l i a b l e  experiment. 
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TRANSFER PHENOMENA I N  REACTING GAS MIXTURES 

B. V. Alekseyev 

The theory of t r a n s f e r  phenomena i n  nonreacting gas  mixtures 

whose molecules can be viewed as point  f o r c e  cen te r s  has a l ready 

been developed i n  great d e t a i l  [l, 21. The t r a n s f e r  c o e f f i c i e n t s  

i n  t h e  r eac t ion  media may be obtained from t h e  ordinary formulae of 

t h e  r igorous k i n e t i c  theory of gases when e a*/kT $1, where 6"* is 

t h e  chemical reac t ion  a c t i v a t i o n  energy. However, at e leva ted  

temperatures o r  with s u f f i c i e n t l y  low ac t iva t ion  energ ies ,  t h e  number 

of molecular c o l l i s i o n s  which lead t o  chemical r eac t ions  may reach 

t h e  same order  of magnitude as t h e  number of t h e  e l a s t i c  c o l l i s i o n s .  

In  t h i s  case ,  t h e  formulae f o r  ca l cu la t ing  t r a n s f e r  c o e f f i c i e n t s  i n  

nonreacting gas mixtures does not apply. In t h i s  work we consider  

t r a n s f e r  phenomena i n  t h e  r eac t ing  media. The nota t ion  used has 

been se lec ted  t o  correspond as much as poss ib le  t o  t h e  system of 

nota t ion  used i n  book [ 2 ] .  A l l  new designat ions and those which 

d i f f e r  from t h e  nota t ion  i n  book [Z] w i l l  be iden t i f i ed  i n  t h e  t e x t .  

1. Dynamics of Paired Col l i s ions  - - .- ~~ 

In a mixture of gases cons is t ing  of p components, l e t  a number 1 

of bimolecular homogeneous r eac t ions  of t h e  following form take  

p lace  : 

IL 

where v a r e  stochiometric c o e f f i c i e n t s  which can be 

e i t h e r  zero o r  one. Components A a' 
chemical c h a r a c t e r i s t i c s  (and consequently iden t i ca l  molecular weights ) ,  

are considered d i f f e r e n t  i f  they have d i f f e r e n t  i n t e r n a l  energies  6 

e g ,  C Y ,  € 6 .  
exchanges take  p lace  are c a l l e d  e l a s t i c ;  a l l  o ther  c o l l i s i o n s  are 

c y r '  V$r' V Y r '  V 6 r  AB,  A Y "  A s ,  which possess iden t i ca l  

/141 - cy' 
Molecular c o l l i s i o n s  i n  which no mass o r  i n t e r n a l  energy 
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i n e l a s t i c .  L e t  u s  consider  an i n e l a s t i c  c o l l i s i o n ,  t h e  r e s u l t  of which 

is  a chemical r eac t ion :  

.Aa+ A p  -B A y +  A,. (1) 

Nuclear r eac t ions  are not  considered he re ;  t h e r e f o r e ,  t h e  l a w  

of conservation of  m a s s  holds:  

(2) ni t m = HI + m 6 * 

The l a w  f o r  conservat ion of momentum is as fol lows:  

+ +, +, + + 
trlai)a+illpup=171yuy + t n , u 6  = ( n ? , + r t i  ? ) G  = ( m y  + in ,)G, ( 3 )  

where G i s  t h e  cen te r  of mass ve loc i ty  of t he  motion, and 

prime designates  t h e  c h a r a c t e r i s t i c  q u a n t i t i e s  after t h e  c o l l i s i o n .  

U t i l i z ing  equation ( 3 1 ,  one can e a s i l y  obtain t h e  following r e l a t i o n -  

sh ip  : 

where g f o r  example, is t h e  i n i t i a l  ve loc i ty  of moleculep r e l a t i v e  

t o  t h e  ve loc i ty  of molecule cy. The law of conservat ion of energy is 

as follows: 

B CY' 

E + E  + - I n  1 
a P 2 a a 2  6 2 Y Y  2 v 2 1  +--nPup 2 - E ~ + E  +-ui 1 U' 2 1  c - m , ~ ;  2 . 

Consider t h e  l a w  of conservation of energy ( 4 )  i n  t h e  form: 

where 

are t h e  k i n e t i c  energ ies  of t h e  r e l a t i v e  motion of molecules p r i o r  t o  

and after t h e  c o l l i s i o n ,  respec t ive ly .  I t  fol lows from equation (5) 
f o r  t h e  endothermal r eac t ion  ( € + E  >E + €  ) t h a t  t h e  k i n e t i c  energy Y 6 a P  
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of t h e  r e l a t i v e  motion of t h e  molecules ?lZe + E  - E  - E  >o; i n  t h e  case  

of exothermic r eac t ions ,  t h e r e  is no such l i m i t a t i o n  on t h e  i n i t i a l  

k i n e t i c  energy with respec t  t o  t h e  motion of molecules. 

by d(0Pap (aaps  0, 'p, 2 3  

t h a t  a molecule of type  B ,  after c o l l i s i o n  with a molecule of type cy, 

w i l l  f a l l  within t h e  s o l i d  angle  w, dm; t h e  following r eac t ion  w i l l  

take place:  

Y S c y B  

L e t  us designate  

is t h e  pos i t i on  i n  t h e  x x plane)  t h e  probabi l i ty  r ys 

A , + A p  + A y  + A 6 ,  

which w i l l  be designated as r (Figure 1). 

Figure 1: Coordinates which are used i n  consider ing 
i n e l a s t i c  c o l l i s i o n s  of molecules. 

A s s u m e  t h a t ,  upon c o l l i s i o n ,  t he  p r i n c i p l e  of maeroscopic r eve r s i -  

b i l i t y  takes p lace  if t h e  p robab i l i t y  d i s t r i b u t i o n  d e n s i t i e s  Y6 

f o r  t h e  d i r e c t  and reverse  c o l l i s i o n s  are r e l a t e d  by t h e  equation: 
paps pys 

P YE b sin odod'p dbdedGadi;(, = 
gap 
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Appropriate choice of a coordinate  system always m a k e s  it poss ib le  t o  

achieve t h e  following r e l a t i o n s h i p :  

do = do', 

and, consequently, t h e  p r i n c i p l e  of macroscopic r e v e r s i b i l i t y  can be 

reduced t o  t h e  form: 

Remark 1: A s  a r e s u l t  of c o l l i s i o n s  of c l a s s i c a l  s t ruc tu re -  

l e s s  point  p a r t i c l e s  of types  CY and B (with masses m and m ) ,  l e t  

r eac t ion  (1) take  p lace ,  forming p a r t i c l e s  of types  y and 6 (with masses 

m and m 6 ) .  

it follows t h a t  t h e  whole c o l l i s i o n  process proceeds i n  one plane,  

and t h e  impact parameters before  and af ter  c o l l i s i o n s  are r e l a t e d  

by t h e  formula: 

CY B 

Then, on t h e  b a s i s  of t h e  l a w  of conservat ion of momentum, Y 

nianipbgap= It1 Y t n ~ b ' g ' ~ ~ '  

If t h e  c o l l i s i o n  of p a r t i c l e s  takes p lace  i n  one p lane ,  then geometric 

parameters 6 and E' may be se lec ted  equal. It is poss ib le  t o  

show t h a t  i n  t h i s  case the  following formula holds:  

However, it is  w e l l  known t h a t  t he  bimolecular r eac t ion  is a 

complex r eac t ion  which involves the  formation of quasimolecules 

(ac t iva ted  complex). Apparently, during t h e  des t ruc t ion  of quasi-  

molecules, t h e  p a r t i c l e s  which are formed do not s c a t t e r  i n  t h e  same 

plane i n  which t h e  c o l l i s i o n  took place.  Formula ( 5 ' )  is the re fo re  

of l i t t l e  use. A t  p r e sen t ,  t h e  values  of t h e  p robab i l i t y  

f o r  chemical r eac t ions  cannot be expressed as a func t ion  of angles 

8 andcp . Therefore, i n  ca l cu la t ing  t h e  c o l l i s i o n  i n t e g r a l s ,  we s h a l l  

hypothesize i s o t r o p i c  sca t t e r ing .  S p e c i f i c a l l y ,  we s h a l l  assume t h a t  

YG 
pa p 

/ 1 4 4  - 



during t h e  des t ruc t ion  of quasimolecules,  a l l  s c a t t e r i n g  d i r ec t ions  

f o r  t h e  escaping p a r t i c l e s  are equiprobable. 

2. - Enskog Method f o r  Solving the  Boltzmann Equation, 
~ 

Taking _ _  i n t o  - Account-Inelastic - Col l i s ions  

The Boltzmann equation may be wr i t ten  i n  t h e  form 

where 

Let u s  consider a hypothet ical  problem f o r  which t h e  two c o l l i s i o n  

t e r m s  on t h e  r i g h t  s i d e  of t h e  Boltzmann equation have t h e  form 

where 1/€ and l / 6  a r e  measures of the  frequency of e l a s t i c  and i n e l a s t i c  

c o l l i s i o n s ,  respec t ive ly .  When 1/6<1/c, t he  c o l l i s i o n s  r e s u l t i n g  i n  

chemical r eac t ions  a r e  much less frequent  than e l a s t i c  c o l l i s i o n s .  

I t  is  poss ib le  t o  show t h a t  an addi t iona l  s c a l a r  term appears i n  t h e  

f i r s t  approximation of t h e  general  so lu t ion  of i n t eg ro -d i f f e ren t i a l  

Boltzmann equations.  Exci ta t ion  and i n i t a t i o n  r eac t ions  within t h e  

framework of t h i s  approximation were inves t iga ted  i n  re ferences  [ 3 ,  41. 
We s h a l l  consider  another l imi t ing  case ( l / 6  -l/€ ) ,  which takes p l . x e ,  

f o r  ins tance ,  at e levated temperatures when E"bkT ( E " *  is t h e  a c t i v a t i o n  

energy of the  chemical reac t ion) .  

Let us represent  a d i s t r i b u t i o n  func t ion  f i n  t h e  form 
cy 

For the  d i s t r i b u t i o n  funct ion f (O) w e  obta in  the equat ion:  IY 



From equation (6)  w e  ob ta in  a Maxwellian d i s t r i b u t i o n  func t ion  f o r  

t h e  system i n  equi l ibr ium: 

The Maxwellian d i s t r i b u t i o n  ( 7 )  corresponds t o  t h e  following system 

of summation i n v a r i a n t s  : 

Remark 2:  For t h e  summation inva r i an t  n 7CY (nTa is  t h e  number 

of atoms of type T i n  a 

f romthe  hydrodynamic Enskog equations one can obta in  V d i f f u s i o n  equations 

f o r  a chemical element C51. However, t h e s e  equations w i l l  not  be new 

and independent, s i n c e  they r e s u l t  from p d i f f u s i o n  equations f o r  

t h e  components. 

i nva r i an t .  

molecule of CY components, where cy = 1, .. . , p ) ,  

Therefore,  nTa, is not used as a new independent 

In  t h e  first approximation t h e  Boltzmann equation has t h e  form: 

An add i t iona l  condi t ion is w r i t t e n  i n  an ordinary f a sh ion :  /146 - 
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The operator  

f o r  t h e  d i s t r i b u t i o n  func t ion  f (O) has t h e  form 
CY 

a a 

Ji 

where \Va \\la is  a nondivergent tensor  \\',I\:-- z lVuL!  ; K is t h e  number 1 2  
-, -, + o  --t 

cy 

of type cy p a r t i c l e s  formed per  u n i t  volume per  u n i t  t i m e  a t  t h e  expense 

_- 
L. is t h e  thermodynamic i n t e r n a l  energy per  g ram:  ;i = v;/l?-+ ";/mi* 
- 

(O) has an ordinary form: In t h i s  ca se  K = 0 and t h e  operator  D 
( 0 )  

cy cy 

where 

The general  so lu t ion  of t h e  system of l i n e a r  i n t e g r a l  equations (8 )  

may be found i n  t h e  form 

Subs t i tu t ing  @ from ( 9 )  i n t o  equation (8) and equating t h e  c o e f f i c i e n t s ,  

w e  ob ta in  a system of i n t e g r a l  equations l i n e a r  with respec t  t o  func t ions  
CY 



One can e a s i l y  determine t h a t  t h e  following condi t ions  f o r  t h e  so lu t ion  

of l i n e a r  i n t eg ra l  equations (101, ( l l) ,  and (12)  a r e  f u l f i l l e d :  

-9 

c [ - “9) ia ya d v ,  = 0; 
a 

-t (0) -* 0 + 
c [ f a  IValVaqfadVa = 0; 
a 

In t eg ra l  equations (10)-(12)  may be wr i t t en  i n  general  form as fol lows:  



Q u a t  ion 
Number 

( 1 1 )  

(12) 

i 

A a  

Additional condi t ions  f o r  equations (10) and (11) are as fol lows:  

There is no addi t iona l  condi t ion f o r  equation (12).  

3 .  Variat ion P r i n c i a l e  

Before using the  v a r i a t i o n  p r i n c i p l e  t o  f i n d  an approximate so lu t ion  

of i n t eg ra l  equation ( l 3 ) ,  l e t  us prove severa l  i n t e g r a l  theorems. 

Consider t h e  expression 

+ 
where K f o r  example, is a tensor  funct ion dependent on W Indices  

r ,  a, 8 ,  y ,  and 6 a r e  mute. Replace index cy with y and index $ with 

6 . W e  then obta in  

CY' cy- 

Ut i l i z ing  t h e  p r i n c i p l e  of microscopic r e v e r s i b i l i t y  i n  t h e  form 
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and t h e  r e l a t i o n s h i p  
; ( O )  , ( O )  (a) (0) 
f a  f p  = f ,  f s  - (16) 

Subs t i t u t ing  (15) and (16) i n t o  formula (14) and considering c o l l i s i o n s  

Y+6 r e v e r s i b l e ,  w e  f i n d  

Thus, t h e  following formula has been proved: 



Since the possible  form of the tensors K cy, %, KS, and K 

then 
is a dyad, Y 

I K , K I '  20. 
(18) 

Analogously, if {K,L rlis an operator 

I K , L \ '  :-z I: j j J l j / (K ,+Kp) : (L ;  -t L 'h -  L a  - [ -p )  x 
r apy6 

then 

From relationship (19) it follows that 

L e t  us now assume that we have a tensor function t (hk) which 
CY 

s a t i s f i e s  the equations : 
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Let us b i s c a l a r l y  mult iply i n t e g r a l  equat ions (13) by the  t r i a l  

t enso r  func t ions  t (hk), and i n t e g r a t e  t h e  obtained binary tensor  product 
Ly_, 

of v Then, equating t h e  right-hand s i d e s  of the  obtained 
QI- 

over a l l  va lues  

equation t o  t h e  

of cy cy = 1, ... 
we obta in  

right-hand s i d e s  of equations (21) ,  w e  can sum f o r  a l l  

, b ) .  I f  one a l s o  takes  r e l a t ionsh ip  (17) i n t o  account,  

When t h e  opera tors  a r e  designated by 
I t ( h k )  ( h k )  1 ( h k )  ( h k )  r 

y t  I t Z 1 '  y t  I =  
(22) 

( h k )  ( I l k )  1 ( h k )  ( h k )  \r  
= I t  , T  \ + , I t  , T  

U t i l i z ing  (18) and (a), w e  obtain from equation (22) a va r i a t ion  

p r inc ip l e  i n  t h e  form 

( h k )  ( h k )  I 1 (hlr) ( h k )  
IT  y T  + ? I T  $ T  I 2 . 

The bes t  approximation is achieved when 

6 X  ( ( l a  ( ' I k )  . . R ' " ~ )  a )dG,.- 0 ,  
rl. 

and the  equations which impose l i m i t a t i o n s  on t h e  t r i a l  funct ion have 

t h e  form: 



+ +  
be some t enso r  func t ions  of v e l o c i t i e s  W W In t h a t  - /I53 L e t  G i j ,  Pij 

case, t h e  equations i n  braces  are defined f o r  elastic c o l l i s i o n s  i n  

t h e  following form: 

i’ j’ 

+ + + +  
L e t  P , P P P be tensor  func t ions  of v e l o c i t i e s  W W6, Wy,  W6.  

Then by d e f i n i t i o n  the  bracketed expressions 

f o r  i n e l a s t i c  c o l l i s i o n s  w i l l  be as fol lows:  

cy 8 ’  Y’ 6 CY’ 

Remark 3 :  Assume t h a t  f o r  t h e  r eac t ion  t o  occur,  molecules must 

c o l l i d e ,  so  t h a t  c o l l i s i o n  parameter b changes, general ly  speaking, with- 

i n  t h e  l i m i t s  zero t o  ~ - -  . ~ _ _ _  (3 (0 oB a r e  t h e  diameters of D & +  ( 7  

I 1 CY’ 
molecules of types Q and B 1. I n t e g r a l s  ( 2 4 ) - ( 2 7 )  are the re fo re  f i n i t e .  
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Using d e f i n i t i o n s  (23)-(27), w e  obta in  

We s h a l l  t ake  t h e  f i n a l  combinations from Sonin polynomials as t r i a l  

Denoting 

Then t h e  formulation of t h e  v a r i a t i o n  p r i n c i p l e  w i l l  acquire  t h e  

following form: 
6 g ( h k )  = 0, 

If w e  denote 

then the  equations 'for l imi t a t ions  on the  t r i a l  funct ions 

w i l l  have the  following form 
( / I  k )  

10, - 0 .  
(28) 



W e  f i n d  t h e  extremum of g (hk) by means of t h e  Lagrange m u l t i p l i e r s :  

It is poss ib le  t o  show t h a t  t h e  consistency condi t ions f o r  equations 

(28) and (29) a r e  
( h k )  
I' 

h = 1, p = 1 ,  ...( p. 

then f inding t h e  expansion c o e f f i c i e n t s  t 

the  following system of a lgebra ic  equations: 

is reduced t o  solving 
Bm 

4. Computations of Bracketed Expressions 
~~ ~ 

-- 

We s h a l l  now assume t h a t  the  p robab i l i t y  d e n s i t i e s  of 

i n e l a s t i c  c o l l i s i o n  Y= and e l a s t i c  c o l l i s i o n  p a p  depend only - /156 

on t h e  magnitudes of t h e  r e l a t i v e  v e l o c i t i e s  of t h e  c o l l i d i n g  molecules 
pa P UP 

The p robab i l i t y  d e n s i t i e s  YE ap are averaged over a l l  
' a p  * P- R 

poss ib le  o r i e n t a t i o n s  of a p a i r  of c o l l i d i n g  molecules; t h e  p o s s i b i l i t v  

of t h e  in t eg ra t ion  for e (from 0 t o  2-m) therefore  immediately a r i s e s ,  s ince  
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t he  integrand is not dependent on E .  In  accordance with t h e  f i r s t  theory,  

we s h a l l  assume t h a t  t h e  p robab i l i t y  dens i ty  b y 6  of t h e  i n e l a s t i c  

c o l l i s i o n  is  equal t o  a constant  y6 , when t h e  t o t a l  t r a n s l a t i o n a l  

energy of t h e  r e l a t i v e  motion of molecules CY and $ is greater than E * ;  
otherwise,  Y6 is equal t o  zero. According t o  t h e  second theory,  

p robab i l i t y  dens i ty  p u s  is  equal t o  a constant  "' when t h e  t r ans -  

l a t i o n a l  energy of t h e  r e l a t i v e  motion of molecules along t h e  l i n e  of 

cen te r s  is g rea t e r  than E " * ;  otherwise,  '@ is equal t o  zero. A s  

would be expected, t h e  " e l a s t i c "  bracketed expressions are expressed 

through t h e  c o l l i s i o n  i n t e g r a l s  i n  exac t ly  t h e  same manner as i n  a non- 

reac t ing  mixture of gases. W e  are the re fo re  not  present ing t h e  e l a s t i c  

pa r t  of t h e  expressions within brackets  here  (see (1, 21). However, the  

aP 

pa P r 

ap, 

where 

Let us now c a l c u l a t e  t he  " i n e l a s t i c "  bracketed expressions.  

1. Bracketed expressions of the  type 

One can e a s i l y  see  t h a t  expression ( 3 0 )  i s  a c o e f f i c i e n t  of sPtq i n  

the  expansion of t h e  func t ion  

Expanding t h e  integrands i n t o  a s e r i e s  i n  terms of s and t ,  

we obtain 
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I -  

where 

Coefficients A are found from the equation 
Pqr 

Summation from the right is carried out under the 

following conditions 

. p1.0; 4 1 0 ,  r j p + q .  
A s  a result 
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By expanding t h e  integrand i n t o  a series i n  terms 

of s and t ,  w e  ob ta in  

where 

Summation is  c a r r i e d  out under t h e  following condi t ions  

Co l l i s ion  i n t e g r a l s  

( 3 2 ) .  

t h e  ca l cu la t ions  of t r a n s f e r  c o e f f i c i e n t s  i n  t h e  first approximation 

a r e  : 

'! 0. '?(I1) ,) a r e  determined from formulas (31) and 

The bracketed expressions of t h i s  type which are necessary f o r  
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3 .  Bracketed expressions of t h e  type  

The bracketed expressions of t h i s  type can a l s o  be obtained by 

expanding i n t o  a series of t e r m s  i n  powers of s t . W e  then have P 9  

where 

Coefficient @ (and consequently A ) can be found from t h e  formula 
P9 f h  

1 ( 2 r - t  2 MI + i t  + k + 2 I - p - q ) !  p + 7 - r -  111 - rr - i- k - 1 
x -- - .- . ___. . - . . -. .~ x 

(1) t q -  r -  2tri - H - i - h -  I )  ! k ! ( t i -  k ) !  i (  1 - i )  ! 

Summation i n  expression ( 3 3 )  is c a r r i e d  out under t h e  condi t ions  

a) r 2 0 ,  itirn, ilzn, iz0, h i @ ,  110, hsn, i < l ;  
b) ? r  t - ? t t i + t t + k + 2 1 , p ~ q ,  2 r + 2 i r * + n + i + h + l >  p + q ;  
c) r + ? m + n + k + f + i  5 p + q ;  
d )  r + t i i + k + I  2 p,  r + t t i + n + I  2 q. 



-b -b 

In these formulas, 

the  heat o f  the  reaction 

is  the  angle between the vectors gBa, and gY6; E is 

E y + E K - E u -  
E =  .-. .____ . 

kT 

Let us write the following principal bracketed expressions of t h i s  type: 
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where 

Summation of the  r ight  s i d e  i s  carried out under the conditions 

p a ,  q- ,  r%+q. Ut i l iz ing  formulas ( 3 4 )  and (351, w e  f ind 

where 
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(3  6 continued) 

Summation is c a r r i e d  out under t h e  condi t ions 

For ca lcu la t ing  of t h e  v i scos i ty  i n  t h e  first approximation, w e  r equ i r e  

only a bracketed expression of t h e  given type when p = g = 0 :  
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.. .-._....._ ....... _.- .... - .. .-.. .,......... ,. , , . , . ......,,.,., ., .. .,,_.,,, ....,.,. , , 

5. Calculat ion of  Col l i s ion  In t eg ra l s  

It follows from t h e  foregoing discussion t h a t  i n  order  t o  f i n d  

t r a n s f e r  c o e f f i c i e n t s ,  c o l l i s i o n  i n t e g r a l s  of t h r e e  types  must be 

ca lcu la ted :  

Co l l i s ion  I n t e g r a l s  of t h e  F i r s t  Type - - .  

Let u s  c a l c u l a t e  c o l l i s i o n  i n t e g r a l s  of t h i s  type by using, for 

example, t he  model of s o l i d  e l a s t i c  spheres.  The geometric c o l l i s i o n  

parameters are shown i n  Figure 2. 

Figure 2: Changes of t h e  r e l a t i v e  ve loc i ty  of molecules during 
i n e l a s t i c  c o l l i s i o n s .  



F i r s t  theory. 0<$51~/2; OSx<?r. Since &<E*,  it fol lows 

In t h i s  case 

where 

Second theory.  The whole integrat-3n domain is SI: divided i n t o  

two regions:  t h e  first being g i j  < g i j * ,  0 X 5 rr; t h e  second being 

g ; j  2 g l i ;  0 5  xl 2arcs ing .* . /g . .  
fi, 

‘ I  11 

By performing i n t e g r a t i o n  w e  f i n d  
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r 

Using formulas (39) and ( b o ) ,  it is easy t o  obta in  formulas f o r  

i n t e g r a l s  which are necessary i n  ca l cu la t ing  t r a n s f e r  c o e f f i c i e n t s  

i n  t h e  first approximation. 

F i r s t  - theory. 

Co l l i s ion  I n t e g r a l s  of t h e  Third Type 
.~ - .- - 

For ca l cu la t ing  c o l l i s i o n  i n t e g r a l s  of t he  t h i r d  type 

it is  necessary t o  k n o w  t h e  p robab i l i t y  of i n e l a s t i c  

c o l l i s i o n s  

Since such information f o r  chemical r eac t ions  is  preseii t ly unavai lab le ,  

Y6 a s  a func t ion  of t h e  angles 8 and cp. 
Pap 

I 



we s h a l l  assume t h a t  t h e  s c a t t e r i n g  of p a r t i c l e s  is i so t rop ic .  W e  

can assume t h a t  c o l l i s i o n  of p a r t i c l e s  a and j3 with t h e  appropriate  

energies  leads  t o  t h e  formation of an ac t iva t ed  complex (&) 

d i s soc ia t ion  of which (&) -4-6 l eads  t o  t h e  s c a t t e r i n g  of p a r t i c l e s  

i n  random d i r ec t ions .  Thus, t h e  p robab i l i t y  of t h e  s c a t t e r i n g  of 

p a r t i c l e s  i n  t h e  s o l i d  angle w(8,cp) is independent of t he  coordinates  

8 and c p ;  it depends only on t h e  s o l i d  angle. 

Then ' Y 8  is  only a func t ion  of g 

is reduced t o  t h e  following form: 

+ , t h e  
-f 

Thus, formula (38) 
@ '  B 

Remark 4 :  It fol lows from formula (41) t h a t  within t h e  framework 

of t h e  theory of i s o t r o p i c  s c a t t e r i n g  a l l  c o l l i s i o n  i n t e g r a l s  of t h e  

form R r yF(2rrt+l) 
(11) are i d e n t i c a l l y  equal t o  zero. a8 

By performing t h e  corresponding in t eg ra t ion  w e  ob ta in  the  following: 

F i r s t  theorv.  

/167 

Second theorv - 
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L e t  us present spec i f i c  formulas for calculating lower-order c o l l i s i o n  

integrals : 

F i r s t  theory. 
- 

Second theorv. 
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Col l i s ion  I n t e g r a l s  of t h e  Second Type 

Within t h e  framework of t h e  theory of i s o t r o p i c  s c a t t e r i n g ,  t hese  

cases  of t h e  above-presenLed i n t e g r a l s  can e a s i l y  be found as s p e c i a l  

formulas f o r  t h e  ca l cu la t ion  o f  t h e  c o l l i s i o n  i n t e g r a l s  of t h e  t h i r d  

type ( i n  these  formulas,  it is only necessary t o  assume f = 0,  k = 0). 

I so t ropic  s c a t t e r i n g ,  first theory. - 

I so t ropic  s c a t t e r i n g ,  second theory.  

2 
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/IL I 

6 .  Transfer  Coeff ic ien ts  - /I 70 __ - - . 

It is poss ib le  t o  show t h a t  phenomenological no ta t ion  of t h e  

t r a n s f e r c o e f f i c i e n t s i n  t h e  form of t h e  r a t i o  of thede terminants  is 

t h e  same as i n  a nonreacting g a s .  However, elements of t h e  determinants 

change. When chemical r eac t ions  do not take p lace  i n  a g a s  mixture, 

o r  when t h e i r  e f f e c t  is neg l ig ib l e  (e  g*2d%1), t h e  formulas presented 

below f o r  t r a n s f e r  c o e f f i c i e n t s  coincide with the  corresponding formulas 

f o r  t r a n s f e r  c o e f f i c i e n t s  i n a  nonreacting gas mixture. 

1. Viscosity c o e f f i c i e n t :  

r ! , l  ..... %,, H , / tl 
. . . . . . . . . . . . .  
I!, , ..... H, ,? t i I L / r f  

t I J t l ,  * . . I  t ',Jb 0 

her  e 

175 



2. Thermal conductivity coe f f i c i ent  

I . . . . . . . . . . . . . . . . .  i 

[ . . . . . . . . . . . . . . . . . I  

. 
. 2 I 0 ,  .... o . 1, .... I . 

A' - 72. T __ . - _._ . . . . . . . . . .  
I )  1 ..... 

41 I L  

8 0 0  

1 1  
I . . . . . . . . . . . . . .  

I . . . . . . . . . . . . . . .  

here 
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3. Thermal d i f f u s i o n  c o e f f i c i e n t  

I . . . . . . . . . . . . . . . .  
0 0 -  - 0 0  - 0 1  - 0  1 .... Q ... Q I L ,  ..... Q,, 

Q , L P  . 6 ;: ..... 0' . .... 
IP Blip 8 

is ca l cu la t ed  from formulas where 

4. Diffusion c o e f f i c i e n t  

I . . .  . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . .  
-00 I ....................... 
Q I L  /I 

O0 can be found from formula ( 4 2 ) .  Note t h a t  $moo=O. 
olf3 Coeff ic ien ts  $ 
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PERTURBATION OF THE MAXWELLIAN DISTRIBUTION 
I N  CHEMICALLY REACTING GAS MIXTURES 

B. V. Alekseyev and V. R. Yanovskiy 

The s i t u a t i o n  wherein t h e  number of i n e l a s t i c  c o l l i s i o n s  is of 

a comparable order  of magnitude as the  number of e l a s t i c  c o l l i s i o n s  

w a s  considered i n  [l]. Here we s h a l l  consider  t h e  o ther  l imi t ing  

case ,  t h e  s i t u a t i o n  i n  which i n e l a s t i c  c o l l i s i o n s  occur s i g n i f i c a n t l y  

less f requent ly  than e l a s t i c  ones. 

t o  t h e  nota t ion  used i n  [l]. The f i r s t  approximation of t h e  general  

so lu t ion  of t h e  Boltzmann equation conta ins  an addi t iona l  s c a l a r  term, 

The nota t ion  used here  is i d e n t i c a l  

('It . The i n t e g r a l  equation f o r  determining t, is a s  fol lows:  
cy 

The so lu t ion  of (1) is found i n  t h e  form of a s e r i e s  of Sonin polynomials: 

If necessary,  i n  equation (1) one can take i n t o  account a t e r m  of t h e  

type J (f ("f'l)'), as w a s  done i n  [I];  here ,  however, w e  s h a l l  be in t e re s t ed  

pr imari ly  i n  t h e  r a t e  of convergence of series (2) .  

t h e  mean mass ve loc i ty  and t h e  temperature of t h e  mixture are determined 

i n  an ordinary fash ion:  

The concentrat ion,  
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In  t h e  first approximation 

( 3  continued ) 

Condition ( 3 )  is  f u l f i l l e d ,  s i n c e  t h e  integrand is odd with 

respec t  t o  V Conditions ( 4 )  and (5) imply t h a t  
+ 

a' 

t,, = 0; 

2: t U l t l ,  = o .  
a .  

( 6 )  

(7)  

L e t  us  def ine  t h e  temperature of t he  component by t h e  following 

r e l a t ionsh ip :  
1 2 

T, = - I t n a V a  fa d z, 3 k n ,  

Then, i n  t h e  first approximation, Ta = T ( l  - tal). 

c a l c u l a t e  t h e  nonequilibrium p a r t i a l  s t a t i s t i ca l  pressure  of 

ponent : 
1 (0) 2 + 

L e t  u s ,  t h e r e f o r e ,  

p , = n , k T + -  3 a  ztn,J t,f, V , d ~ , = n , k T ( I - t ' , ~ ) .  

Thus, Dal ton 's  l a w  has  t h e  form p = n kT . Let us note  t h a t  t he  t o t a l  
W C Y  

pressure  of t h e  mixture p=c p = G? kT(1- t  = nkT does not  change. 

Applying the  v a r i a t i o n  p r i n c i p l e  (see [ Z ] ) ,  f o r  t he  determining t h e  

a c y  a a  C Y 1  
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expansion c o e f f i c i e n t s  of (2)  

a lgebraic  equations : 

w e  obtain an i n f i n i t e  system of l i n e a r  

(8) 

where 

where R (W 2,  is  t h e  left-hand s i d e  of equation (1). 

f o r  p+1 addi t iona l  condi t ions ( 6 )  and ( 7 ) ;  t h i s  i n su res  t h e  exis tence 

of a unique solut ion.  L e t  u s  present  t h e  r a t i o s  for ca lcu la t ing  

t h e  bracketed expressions on t h e  right-hand s i d e  of eauat ion (1): 

System (8) is solved 
C Y C Y  
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R,, -- I) ; 

.-. - -  - - - 
here E i  = e./kT, e = E + E* - E n  - CB. Coeff ic ien ts  A i  are the  following: 1 

where 

[l]. Note t h a t  i n  t h i s  approximation, s ince  p robab i l i t y  p (gap, 0, y) 

y'((l~) are t h e  c o l l i s i o n  i n t e g r a l s  which w e r e  introduced i n  reference 
' YS 

a P  

aP 

has been normalized t o  un i ty ,  t h e  noniso t ropic i ty  of t h e  d i s soc ia t ion  

of t he  ac t iva ted  complex has no e f f e c t  on ca l cu la t ed  r e s u l t s .  The 

r a t e  of t h e  r eac t ion  i n  t h e  f i r s t  approximation w i l l  be 

where Qr is  t h e  heat  of t h e  r th 

t h e  multicomponent mixture cor rec t ion  t o  t h e  r eac t ion  r a t e  

due t o  t h e  heat of r eac t ion  has the  form P(E/kT)Qc -E/kT (where 

P(E/kT) is t h e  polynomial of E/kT). Thus, t h e  evaluat ion of t h e  

e f f e c t  of t h e  heat  of r eac t ion  on t h e  r eac t ion  ra te  presented i n  C31 

is not va l id .  

homogeneous reac t ion .  Thus, t h e  /180 - 
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In  order  t o  study t h e  ra te  of convergence of (21, consider t h e  

simplest  r eac t ion ,  A+A-C+D,  and neglect  t h e  r eac t ion  products. 

From condi t ions ( 6 )  and (7 ) ,  it follows t h a t  tal=t 

expressions,  necessary f o r  t h r e e  approximations, are t h e  following : 

=O. The bracketed a0 

Henceforth, it is necessary t o  def ine e x p l i c i t l y  the  
dependences kG. r 0 0 

l'u9.(g9.a) and ~ l ~ , . ~ ( g , ~ - )  - L e t  U s  consider  two t h e o r i e s :  
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where is the  v e l o c i t y  along t h e  l i n e  of c e n t e r s  of t h e  molecules 

during t h e  c o l l i s i o n ;  go =E/kT. When E is t h e  a c t i v a t i o n  energy, 

it is  poss ib le  t o  show t h a t  case  (9) corresponds t o  t h e  choice of t he  

p robab i l i t y :  

2 1 '1 

The r eac t ion  r a t e  i n  the  ia approximation w i l l  be 

The r e s u l t s  of t hese  ca l cu la t ions  are summarized i n  t h e  t ab le .  

The t a b l e  shows t h a t  t he  first approximation is s u f f i c i e n t  

f o r  p r a c t i c a l  purposes f o r  ca l cu la t ing  the  r eac t ion  r a t e  

i n  t h e  most i n t e r e s t i n g  range, E/kT=e. With la rge  E values ,  the s e r i e s  

K converges more slowly. The boundary of the  convergence region 

can be evaluated from the  condi t ions It I =It / when using two approximations. 

For t h e  f i r s t  and second t h e o r i e s ,  we obtain eE16.8 and fk14.1 respec t ive ly .  

- 

CY 

1 2 

The point  of minimum K/K(') f o r  s m a l l  values  of e is  E=5.7 by the  

f i r s t  theory and f?=4.4 by t h e  second theory.  

F i r s t  theory K/K"' 
. -. 

0,9358 0,9348 
0,9130 0,9128 

0,9499 0,9470 
0,9801 0,9756 

0 , 0 1 44 0,9143 

I 

Commas represent  decimal points .  

EikT 

3 0,92943 
4 0,5089 0,8038 
5 0,74205 0,73 40 8 
7 0,7709 0,7570 
9 0,8744 0,8541 

1 
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- 
The third approximation for the first theory (when E equals 5, 7 and 9) 

( 0 )  gives K/K equal to 0.73543, 0.7514, and 0.8479, respectively. 
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